Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2014

Supporting information for

Revised Manuscript submitted to *Journal of Materials Chemistry C* (Manuscript ID TC-ART-08-2014-001806)

Structure-Property Relationship in Charge Transporting Behaviour of Room Temperature Liquid Crystalline Perylenebisimides.

K. P. Prajitha,^{a,b} S, Chithiravel,^a K. Krishnamoorthy^{*a,b,c} and S. K. Asha^{*a,b,c}

- a) Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411008, India.
- b) Academy of Scientific and Innovative Research, New Delhi, India
- c) CSIR-Network Institutes of Solar Energy, New Delhi, India

Synthesis and Characterization:

Per-PDP-Diol was synthesized as reported in our earlier report.¹ Yield: 11.0 g (74 %); m.p. > 400 °C; ¹H NMR (CDCl₃+TFA): d = 8.91 (m, 8H; perylene), 6.89–7.16 (m, 6H; ArH-PDP), 2.39 (t, 4H; Ar-CH₂), 1.53 (t, 4H; Ar-CH₂-CH₂), 1.0–1.4 (br, 48H; aliphatic CH₂), 0.84 ppm (t, 6H; terminal CH₃); ¹³C NMR: 166.27, 163.21, 162.65, 160.62, 155.86,143.08, 136.66, 134.16, 130.32, 127.00, 126.14, 124.92, 123.12, 122.59, 115.03, 111.82, 106.19, 32.17, 31.28, 29.92, 29.60, 22.85, 13.81 ppm; FTIR: (v) 3359 (OH stretch), 2922, 2853, 1698 (C=O imide), 1656, 1592, 1498, 1403, 1360, 1348, 1300, 1250, 1231, 1198, 1176, 967, 862, 813, 796, 750 cm⁻¹; MALDI-TOF (dithranol matrix): m/z calcd for C₆₆H₇₈N₂O₆: 995.34; found: 996.65 [M+1], 1018.58 [M + Na].

Synthesis of ester-functionalized perylenebisimides: 3, 4, 5-Tri (alkoxy) benzoic acid was synthesized using literature procedure ² and converted to the acid chloride by reflux in an excess amount of thionyl chloride. The conversion was monitored by IR spectroscopy.

Synthesis of PBI-E4:

Per-PDP-Diol (0.5 g, 0.5 mmol) was dissolved in dry THF (15 mL) and the solution was cooled to 0 °C. A small amount of triethylamine was added as catalyst. 3, 4, 5 Tri (butyloxy)benzoyl chloride (0.36 g, 1.1 mmol) dissolved in dry THF (5 mL) was added drop wise over a period of 10 min while the temperature was maintained at 0 °C. The reaction mixture was left stirring under ice-cold conditions for 4 h. For workup, THF was distilled and removed. The crude product was purified by column chromatography in DCM/methanol. Yield: 0.67 g (58 %); m.p. 264 °C; ¹H NMR (CDCl₃): d= 8.7–8.9 (m, 8H; perylene), 7.44 (s,4H; Ar-H), 7.25–7.40 (m, 6H; ArH - PDP), 4.06 (t, 12H; Ar-O-CH₂), 2.48 (t, 4H; PDP Ar-CH₂), 1.0–1.9 (m, 72H; aliphatic CH₂), 0.87 ppm (m, 24H; terminal CH₃); ¹³C NMR: 164.70, 163.42, 152.95, 151.46, 150.50, 146.75, 142.93, 142.13, 135.08, 132.04, 131.16, 129.96, 126.78, 123.86, 123.39, 122.00, 120.38, 108.50, 73.60, 69.24, 31.92, 31.13, 30.33, 29.37, 26.09, 22.69, 14.11; FTIR: (υ) 2962 (CH_{stretch}), 2923, 2853, 1730 (C=O_{ester}), 1702 (C=O_{imide})), 1663, 1593, 1503, 1465, 1429, 1359, 1337, 1261, 1198, 1097, 1025, 970, 804, 751 cm⁻¹; MALDI-TOF (dithranol matrix): m/z calcd for C₁₀₄H₁₃₆N₂O₁₄: 1656.91; found: 1657.98 [M⁺], 1674.93 [M⁺Na]; elemental analysis calcd (%): C 76.34, H 8.25, N 1.71; found: C 75.62, H 8.66, N 1.64.

Synthesis of PBI–E5: A similar procedure to that of PBI-E4 was adopted by using Per-PDP-Diol 0.5 g (0.5 mmol) and 3,4,5 Tri (pentyloxy) benzoyl chloride (0.39 g, 1.1 mmol). Yield: 0.63 g (51 %); m.p. 244 °C; ¹H NMR (CDCl₃): d = 8.7-8.9 (m, 8H; perylene), 7.44 (s, 4H; Ar-H),7.25–7.40 (m, 6H; ArH - PDP), 4.06 (t, 12H; Ar-O-CH₂), 2.48 (t, 4H; PDP Ar-CH₂), 1.0–1.9 (m, 84H; aliphatic CH₂), 0.87 ppm (m, 24H; terminal CH₃); ¹³C NMR: 164.70, 163.42, 152.95, 151.46, 150.50, 146.75, 142.93, 142.13, 135.08, 132.04, 131.16, 129.96, 126.78, 123.86, 123.39, 122.00, 120.38, 108.50, 73.60, 69.24, 31.92, 31.13, 30.33, 29.37, 26.09, 22.69, 14.11; FTIR: (υ) 2962 (-CH_{stretch}), 2923, 2853, 1730 (C=O_{ester}), 1702 (C=O_{imide}), 1663, 1593, 1503, 1465, 1429, 1359, 1337, 1261, 1199,1098, 1025, 971, 804, 752 cm ⁻¹; MALDI-TOF (dithranol matrix): m/z calcd for C₁₁₀H₁₄₈N₂O₁₄ : 1722.2; found: 1742.1 [M⁺ Na], 1758.22 [M⁺ K]; elemental analysis calcd (%): C 76.80, H 8.55, N 1.63; found: C 75.98, H 8.94, N 1.62.

Synthesis of PBI–E6: A similar procedure to that of PBI-E4 was adopted by using Per-PDP-Diol 0.5 g (0.5 mmol) and 3,4,5 Tri (hexyloxy) benzoyl chloride (0.44 g, 1.1 mmol). Yield: 0.64 g (53 %); m.p. 239 °C; ¹H NMR (CDCl₃): d = 8.7–8.9 (m, 8H; perylene), 7.44 (4H, s ; Ar-H),7.25–7.40 (m, 6H; ArH - PDP), 4.06 (t, 12H; Ar-O-CH₂), 2.48 (t, 4H; PDP Ar-CH₂), 1.0–1.9 (m, 982H; aliphatic CH₂), 0.87 ppm (m, 24H; terminal CH₃); ¹³C NMR: 164.70, 163.42, 152.95, 151.46, 150.50, 146.75, 142.93, 142.13, 135.08, 132.04, 131.16, 129.96, 126.78, 123.86, 123.39, 122.00, 120.38, 108.50, 73.60, 69.24, 31.92, 31.13, 30.33, 29.37, 26.09, 22.69, 14.11; FTIR: (υ) 2962 (-CH_{stretch}), 2923, 2853, 1730 (C=O_{ester}), 1702 (C=O_{imide}), 1663, 1593, 1503, 1465, 1429, 1359, 1337, 1260, 1199,1098, 1023, 969, 805, 750 cm⁻¹; MALDI-TOF (dithranol matrix): m/z calcd for C₁₁₆H₁₃₀N₂O₁₄ : 1806.5; found: 1806.57 [M⁺], 1826.51[M⁺ Na]; elemental analysis calcd (%): C 77.21, H 8.83, N 1.55; found: C 76.78, H 8.54, N 1.72.

Synthesis of PBI–E7: A similar procedure to that of PBI-E4 was adopted by using Per-PDP-Diol 0.5 g (0.5 mmol) and 3,4,5 Tri (heptyloxy) benzoyl chloride (0.48 g, 1.1 mmol). Yield: 0.59 g (49 %); m.p. 227 °C; ¹H NMR (CDCl₃): d=8.7–8.9 (dd, 8H; perylene), 7.44 (s, 4H; Ar-H),7.25–7.40 (m, 6H; ArH - PDP), 4.06 (t, 12H; Ar-O-CH₂), 2.48 (t, 4H;PDP Ar-CH₂), 1.0–1.9 (m, 112H; aliphatic CH₂), 0.87 ppm (m, 24H; terminal CH₃); ¹³C NMR: d=164.70, 163.42, 152.95, 151.46, 150.50, 146.75, 142.93, 142.13, 135.08, 132.04, 131.16, 129.96, 126.78, 123.86, 123.39, 122.00, 120.38, 108.50, 73.60, 69.24, 31.92, 31.13, 30.33, 29.37, 26.09, 22.69, 14.11; FTIR: (υ) 2962 (CH_{stretch}), 2923, 2853, 1730 (C=O_{ester}), 1702 (C=O_{imide}), 1663, 1593, 1503, 1465, 1429, 1359, 1337, 1260, 1199,1098, 1025, 970, 805, 751 cm ⁻¹; MALDI-TOF (dithranol matrix): m/z calcd for C₁₂₂H₁₇₂N₂O₁₄ : 1890; found: 1910.32 [M⁺ Na], 1926.27[M⁺ K]; elemental analysis calcd (%): C 77.58, H 9.07, N 1.48; found: C 76.84, H 9.63, N 1.60.

Synthesis of PBI–E8: A similar procedure to that of PBI-E4 was adopted by using Per-PDP-Diol 0.5 g (0.5 mmol) and 3,4,5 Tri (octyloxy) benzoyl chloride (0.52 g, 1.1 mmol). Yield: 0.62 g (52 %); m.p. 221 °C; ¹H NMR (CDCl₃): d=8.7–8.9 (dd, 8H; perylene), 7.44 (s, 4H; Ar-H),7.25–7.40 (m, 6H; ArH - PDP), 4.06 (t, 12H; Ar-O-CH₂), 2.48 (t, 4H;PDP Ar-CH₂), 1.0–1.9 (m, 134H; aliphatic CH₂), 0.87 ppm (m, 24H; terminal CH₃); ¹³C NMR: d=164.70, 163.42, 152.95, 151.46, 150.50, 146.75, 142.93, 142.13, 135.08, 132.04, 131.16, 129.96, 126.78, 123.86, 123.39, 122.00, 120.38, 108.50, 73.60, 69.24, 31.92, 31.13, 30.33, 29.37, 26.09, 22.69, 14.11; FTIR: (υ) 2962 (CH_{stretch}), 2923, 2853, 1730 (C=O_{ester}), 1702 (C=O_{imide}), 1663, 1593, 1503, 1465, 1429, 1359, 1337, 1260, 1199,1098, 1025, 972, 804, 751 cm⁻¹; MALDI-TOF (dithranol matrix): m/z calcd for C₁₂₈H₁₈₄N₂O₁₄: 1972.2 found: 1974.4 [M⁺ Na], 2010.4 [M⁺ K]; elemental analysis calcd (%): C 77.93, H 9.30, N 1.42 found: C 77.49, H 9.62, N 1.43.

Synthesis of PBI–E9: A similar procedure to that of PBI-E4 was adopted by using Per-PDP-Diol 0.5 g (0.5 mmol) and 3,4,5 Tri (nonyloxy) benzoyl chloride (0.57 g, 1.1 mmol). Yield: 0.61g (51%); m.p. 202°C; ¹H NMR (CDCl₃): d=8.7–8.9 (dd, 8H; perylene), 7.44 (4H, s; Ar-H),7.25–7.40 (m, 6H; ArH - PDP), 4.06 (t, 12H; Ar-O-CH₂), 2.48 (t, 4H;PDP Ar-CH₂), 1.0–1.9 (m, 148H; aliphatic CH₂), 0.87 ppm (m, 24H; terminal CH₃); ¹³C NMR: d=164.70, 163.42, 152.95, 151.46, 150.50, 146.75, 142.93, 142.13, 135.08, 132.04, 131.16, 129.96, 126.78, 123.86, 123.39, 122.00, 120.38, 108.50, 73.60, 69.24, 31.92, 31.13, 30.33, 29.37, 26.09, 22.69, 14.11; FTIR: (v) 2962 (CH_{stretch}), 2923, 2853, 1730 (C=O_{ester}), 1702 (C=O_{imide}), 1663, 1593, 1503, 1465, 1429, 1359, 1337, 1260, 1199,1098, 1025, 970, 806, 752 cm⁻¹; MALDI-TOF (dithranol matrix): m/z calcd for C₁₃₄H₁₉₆N₂O₁₄ : 2059.99;; found: 2058.99; [M⁺], 2078.39[M⁺Na], 2095.39[M⁺K]; elemental analysis calcd (%): C 78.24, H 9.5, N 1.36; found: C 77.54, H 10.05, N 1.37. **Synthesis of PBI–E10:** A similar procedure to that of PBI-E4 was adopted by using Per-PDP-Diol 0.5 g (0.5 mmol) and 3,4,5 Tri (decyloxy) benzoyl chloride (0.67 g, 1.1 mmol). Yield: 0.68 g (55 %); m.p. 213 °C; ¹H NMR (CDCl₃): d=8.7–8.9 (dd, 8H; perylene), 7.44 (s, 4H; Ar-H),7.25–7.40 (m, 6H; ArH - PDP), 4.06 (t, 12H; Ar-O-CH₂), 2.48 (t, 4H;PDP Ar-CH₂), 1.0–1.9 (m, 160H; aliphatic CH₂), 0.87 ppm (m, 24H; terminal CH₃); ¹³C NMR: d=164.70, 163.42, 152.95, 151.46, 150.50, 146.75, 142.93, 142.13, 135.08, 132.04, 131.16, 129.96, 126.78, 123.86, 123.39, 122.00, 120.38, 108.50, 73.60, 69.24, 31.92, 31.13, 30.33, 29.37, 26.09, 22.69, 14.11; FTIR: (υ) 2962 (CH_{stretch}), 2923, 2853, 1730 (C=O_{ester}), 1702 (C=O_{imide}), 1663, 1593, 1503, 1465, 1429, 1359, 1337, 1260, 1199,1098, 1023, 971, 806, 751 cm⁻¹; MALDI-TOF (dithranol matrix): m/z calcd for C₁₄₀H₂₀₈N₂O₁₄: 2141.56; found: 2142.56 [M⁺], 2176.39 [M⁺ Na]; elemental analysis calcd (%): C 78.53, H 9.7, N 1.31; found: C 77.83, H 9.6, N 1.26.

Synthesis of PBI–E11: A similar procedure to that of PBI-E4 was adopted by using Per-PDP-Diol 0.5 g (0.5 mmol) and 3,4,5 Tri (undecyloxy) benzoyl chloride (0.77 g, 1.1 mmol). Yield: 0.60 g (52%); m.p. 200 °C; ¹H NMR (CDCl₃): d=8.7–8.9 (dd, 8H; perylene), 7.44 (s, 4H; Ar-H),7.25–7.40 (m, 6H; ArH - PDP), 4.06 (t, 12H; Ar-O-CH₂), 2.48 (t, 4H;PDP Ar-CH₂), 1.0–1.9 (m, 160H; aliphatic CH₂), 0.87 ppm (m, 24H; terminal CH₃); ¹³C NMR: d=164.70, 163.42, 152.95, 151.46, 150.50, 146.75, 142.93, 142.13, 135.08, 132.04, 131.16, 129.96, 126.78, 123.86, 123.39, 122.00, 120.38, 108.50, 73.60, 69.24, 31.92, 31.13, 30.33, 29.37, 26.09, 22.69, 14.11; FTIR: (υ) 2962 (-CH_{stretch}), 2923, 2853, 1730 (C=O_{ester}), 1702 (C=O_{imide}), 1663, 1593, 1503, 1465, 1429, 1359, 1337, 1260, 1199,1098, 1025, 970, 805, 751 cm_1; MALDI-TOF (dithranol matrix): m/z calcd for C₁₄₆H₂₂₀N₂O₁₄ : 2227.3; found: 2246.95 [M⁺ Na]; elemental analysis calcd (%): C 78.80, H 9.87, N 1.26; found: C 77.9, H 9.37, N 0.92.

Figure S1. ¹H NMR spectra of PBI-En molecules recorded in CDCl_{3.}

Figure S2. Maldi- TOF spectra of PBI-En molecules in dithranol matrix.

Figure S3. Gel permeation chromatograms of PBI-En molecules in CHCl₃.

Figure S4. Thermogravimetric analysis (TGA) of PBI-En molecules under N_2 atmosphere.

Figure S5: DSC slow cooling thermogram of PBI-E11 in the second cooling cycle at the rate of 1° C / minute.

Figure S6. Polarized Light microscopic images of liquid crystalline **PBI-En** molecules (under crossed polarizer) at various temperatures.

Figure S7: The room temperature **XRD** pattern (expanded in the range $2\theta = 5-10^{\circ}$) of annealed samples of a) **PBI-E12** and b) **PBI –E11** from the isotropic melt.

Figure S8: Variable temperature **XRD** pattern (expanded in the range $2\theta = 5-30^{\circ}$) of **PBI-E9** at high temperature (191°C) and at room temperature (25°C).

Figure S9. (a) XRD pattern (expanded in the range $2\theta = 1.5$ - 4°) of **PBI-En** molecules annealed from the isotropic melt to room temperature (25 °C) (b) d₁₀₀ distance in (A°) against number of carbon atoms in the terminal spacer of **PBI-En** molecules.

Figure S10: Room temperature wide angle X-ray diffraction patters of crystalline **PBI-En** molecules (n = 4-7) in the 2 θ range 2 - 30°.

References:

1) G. A. Bhavsar and S. K. Asha, Chem. Eur. J., 2011, 17, 12646.

2) J. P. A. Custers, M. C. Hersmis, J. Meuldijk, J. A. J. M. Vekemans and L. A. Hulshof, *Org. Proc. Res. Dev.*, 2002, 6, 645.