Ultrahigh ferroelectric response in Fe modified 0.95(Na_{1/2}Bi_{1/2})TiO₃-0.05BaTiO₃

single crystals

Haiwu Zhang^{a,b*}, Chao Chen^{a, b}, Hao Deng^{a, b}, Bo Ren^a, Xiangyong Zhao^a, Di Lin^a, Xiaobing Li^a, Haosu Luo^{a*}

^a Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 215 Chengbei Road, Jiading, Shanghai 201800, China

^b Graduate University of Chinese Academy of Sciences, Beijing, 100049, China

*E-mail address: zhw3789@sina.com, and hsluo@mail.sic.ac.cn

Ferroelectric properties of pure NBBT5 single crystals.

Fig. s1. Ferroelectric properties of pure NBBT5 single crystals: (a) the polarization-electrical field (P-E) hysteresis loop and bipolar strain-electrical field (S-E) curve; (b) unipolar strain-electrical field $(\varepsilon-E)$ curves.

Fig. s1 shows *P-E* hysteresis loop and bipolar strain-electrical field (*S-E*) curve for pure NBBT5 single crystal. The values of P_r , E_c and S_{max} are 11.8 μ C/cm², 2.2 kV/mm and 0.12, respectively. With respect to iron doped single crystals, the P-E hysteresis is not well saturated and the S-E curve is not asymmetric, which may be mainly attributed to the relative large leakage current density. Similar phenomena were also observed in NBT-BT single crystals grown using other methods.¹⁻³ Besides, an anhysteretic ε -*E* curve was observed for pure NBBT5 single crystals. The values of normalized strain $\varepsilon_{max}/E_{max}$ is 249.6 pm/V.

Reference

102901.

K.-S. Moon, D. Rout, H.-Y. Lee, S.-J. L. Kang, J. Cryst. Growth, 2011, 317, 28-31.
Y.-M. Chiang, G. W. Farrey, A. N. Soukhojak, Appl. Phys. Lett. 1998, 73, 3683.
J. B. Babu, M. He, D. F. Zhang, X. L. Chen, and R. Dhanasekaran, Appl. Phys. Lett, 2007, 90,