Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2014

Supporting information

Realization of self-powered ZnO MSM UV photodetector with high responsivity using asymmetric pair of Au electrodes

Hong-Yu Chen,^{a,b,c} Ke-Wei Liu,*a Xing Chen,^a Zhen-Zhong Zhang,^a Ming-Ming Fan,^{a,b} Ming-Ming Jiang, a Xiu-Hua Xie,^{a,b} Hai-Feng Zhao,^a and De-Zhen Shen*a

- ^a State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, People's Republic of China
- ^b Graduate University of the Chinese Academy of Sciences, Beijing, 100049, People's Republic of China

E-mail: Liukw@ciomp.ac.cn; Shendz@ciomp.ac.cn

Fig. S1 Schematic experimental setup for the measurement of the temporal photoresponse.

^c Department of Materials Science, Fudan University, Shanghai, 200433, People's Republic of China

Fig. S2 Simulation of the potential distribution in ZnO film. (a) w=5-100 μ m, (b) w₁=100 μ m, w₂=5-100 μ m, g=10 μ m.

Fig. S3 SEM image of the Au#1-ZnO-Au#2 self-powered detector (w1=w2=100 $\mu m,$ g=10 $\mu m).$