Supporting Information

Perylene Crystals: Tuning Optoelectronic Properties By Dimensional-controlled Synthesis

Qing Liao,*^a Weigang Zhu,^b ke Hu^a and Hongbing Fu*^{a,b}

^a Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of

Chemistry, Capital Normal University, Beijing, 100048, P. R. China.

^b Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of

Chemistry, Chinese Academy of Sciences, Beijing, 100190

E-mail: liaoqing@cnu.edu.cn; hongbing.fu@iccas.ac.cn

Figure S1. The sketch of our home-made confocal optical microscopy.

Figure S2. (a) The absorption spectra of perylene thin film (30 nm thickness) on a quartz glass substrate; (b) The absorption and PL spectra of perylene solution in acetonitrile. The absorption spectra was obtained from 10^{-5} M solution and the PL spectra excited at 386 nm with a 10^{-6} M solution.

Figure S3. Spectra collected from ribbon crystal excited with a 408 nm laser.

Figure S4. Waveguide characterization from direction 2 of corresponding square perylene crystal.

Figure S5. (a) The energy level of perylene and gold electrode; (b) The optical image of square crystal device; (c) and (d) are the typical output and transfer curves.