Supporting information for:

Cyano substituted benzothiadiazole: a novel acceptor inducing n-

type behaviour in conjugated polymers

List of Figures

Figure S1: Optimised geometries of a) DTDCNBT, where a T-DCNBT dihedral angle of 30.12° is predicted and b) DTDFBT where the T-DFBT angle is near planar. A B3LYP level of theory was used with a basis set of 6-31G(d).

Figure S2: HOMO and LUMO electron density plots and optimized geometries of (a) P(Ge-DTDFBT). and (b) P(Ge-DTDCNBT) B3LYP level of theory, basis set of 6-31G(d).

Figure S3: HOMO and LUMO electron density plots and optimized geometries of (a) P(IDT-DTDCNBT) and (b) P(IDT-DTDFBT) B3LYP level of theory, basis set of 6-31G(d).

Table S1: Theoretical HOMO and LUMO levels and band gap calculated using B3LYP level of theory, basis set of 6-31G(d).

Table S2: Device parameters

Figure S4: The crystal structure of DTDCNBT (50% probability ellipsoids).

Figure S5: Transfer (left) and output (right) characteristics for P(Ge-DTDCNBT) in TG/BC configuration under negative gate voltages (untreated Au source/drain electrodes). Hole transport current was so low that the mobility was not calculable.

Figure S6: Transfer (left) and output (right) characteristics for P(Ge-DTDFBT) in TG/BC device configuration with PFBT treated Au source/drain electrodes.

Figure S7: Transfer (left) and output (right) characteristics for P(IDT-DTDCNBT) in BG/TC device configuration.

Figure S8: Transfer (left) and output (right) characteristics for P(IDT-DTDFBT) in BG/TC device configuration.

Figure S9: ¹H NMR spectrum of monomer 3

Figure S10: ¹H NMR spectrum of P(Ge-DTDCNBT)

Figure S11: ¹H NMR spectrum of P(IDT-DTCNBT)

Figure S12: ¹H NMR spectrum of P(Ge-DTDFBT)

Figure S13: DSC heating and cooling traces of P(IDT-DTDFBT), P(IDT-DTDCNBT), P(Ge-DTDFBT), P(Ge-DTDCNBT) at 20°C/min.

Figure S14: Absorbance spectroscopy of monomer **3** (DTDCNBT) and monomer **4** (DTDFBT) in DCM solution $(\lambda_{\text{max}} \mathbf{3} = 473 \text{ nm}; \lambda_{\text{max}} \mathbf{4} 440 \text{ nm}).$

Figure S1: Optimised geometries of a) DTDCNBT, where a T-DCNBT dihedral angle of 30.12° is predicted and b) DTDFBT where the T-DFBT angle is near planar. A B3LYP level of theory was used with a basis set of 6-31G(d).

Figure S2: HOMO and LUMO electron density plots and optimized geometries of (a) P(Ge-DTDFBT). and (b) P(Ge-DTDCNBT) B3LYP level of theory, basis set of 6-31G(d).

Figure S3: HOMO and LUMO electron density plots and optimized geometries of (a) P(IDT-DTDCNBT) and (b) P(IDT-DTDFBT) B3LYP level of theory, basis set of 6-31G(d).

Table S1: Theoretical HOMO and LUMO levels and band gap calculated using B3LYP level of theory, basis set of 6-31G(d).

Polymer	НОМО	LUMO	Eg
P(Ge-DTDCNBT)	-4.97	-3.72	1.24
P(Ge-DTDFBT)	-4.63	-3.16	1.47
P(IDT-DTDCNBT)	-4.92	-3.66	1.26
P(IDT-DTDFBT)	-4.63	-3.12	1.51

Table S2: Device parameters

Polymer	Device	$\mu_{\rm lin}(\rm cm^2V^{-1}s^{-1})$	$\mu_{sat} (cm^2 V^{-1} s^{-1})$	V _{Th} (V)	I _{on} /I _{off}
	configuration	hole/electron	hole/electron	hole/electron	hole/electron
P(Ge-	TG/BC	na/2.0×10 ⁻³	na/2.8×10 ⁻³	na/43	$na/10^2 - 10^3$
DTDCNBT)	(Au)				
P(Ge-	TG/BC	3.2×10 ⁻² /na	$6.2 \times 10^{-2}/na$	-29/na	$10^3 - 10^4 / na$
DTDFBT)	(Au-PFBT)				
P(IDT-	BG/TC	na/1.4×10 ⁻⁴	na/4.9×10 ⁻⁴	na/38	$na/10^2 - 10^3$
DTDCNBT)	(Al/Au)				
P(IDT-	BG/TC	2.5×10 ⁻² /na	6.1×10 ⁻² /na	-19/na	$10^4 - 10^5 / na$
DTDFBT)	(Al/Au)				

The X-ray crystal structure of DTDCNBT

Crystal data for DTDCNBT: $C_{16}H_6N_4S_3$, M = 350.43, monoclinic, $P2_1/n$ (no. 14), a = 7.1953(4), b = 17.8923(9), c = 11.5414(5) Å, $\beta = 103.832(5)^\circ$, V = 1442.76(12) Å³, Z = 4, $D_c = 1.613$ g cm⁻³, μ (Mo-K α) = 0.516 mm⁻¹, T = 173 K, orange blocks, Agilent Xcalibur 3E diffractometer; 2870 independent measured reflections ($R_{int} = 0.0215$), F^2 refinement,^[1] R_1 (obs) = 0.0387, wR_2 (all) = 0.0885, 2360 independent observed absorption-corrected reflections [$|Fo| > 4\sigma$ (|Fo|), $2\theta_{max} = 56^\circ$], 251 parameters. CCDC 1020253.

Both the C10- and C17-based thiophene rings in the structure of DTDCNBT were found to be disordered. In each case two orientations were identified, of ca. 88:12 and 86:14% occupancy for the C10- and C17-based rings respectively. The geometries of all four rings were optimised, the thermal parameters of adjacent atoms were restrained to be similar, and only the non-hydrogen atoms of the major occupancy orientations were refined anisotropically (those of the minor occupancy orientations were refined isotropically). In each case, the disorder amounts to a swapping of the sulphur position between the two α sites.

SHELXTL, Bruker AXS, Madison, WI; SHELX-97, G.M. Sheldrick, *Acta Cryst.*, 2008, *A64*,
112-122; SHELX-2013, <u>http://shelx.uni-ac.gwdg.de/SHELX/index.php</u>

Figure S4: The crystal structure of DTDCNBT (50% probability ellipsoids).

Figure S5: Transfer (left) and output (right) characteristics for P(Ge-DTDCNBT) in TG/BC configuration under negative gate voltages (untreated Au source/drain electrodes). Hole transport current was so low that the mobility was not calculable.

Figure S6: Transfer (left) and output (right) characteristics for P(Ge-DTDFBT) in TG/BC device configuration with PFBT treated Au source/drain electrodes.

Figure S7: Transfer (left) and output (right) characteristics for P(IDT-DTDCNBT) in BG/TC device configuration.

Figure S8: Transfer (left) and output (right) characteristics for P(IDT-DTDFBT) in BG/TC device configuration.

Figure S9: ¹H NMR spectrum of monomer 3

Figure S10: ¹H NMR spectrum of P(Ge-DTDCNBT)

Figure S11: ¹H NMR spectrum of P(IDT-DTCNBT)

Figure S12: ¹H NMR spectrum of P(Ge-DTDFBT)

Figure S13: DSC heating and cooling traces of P(IDT-DTDFBT), P(IDT-DTDCNBT), P(Ge-DTDFBT), P(Ge-DTDCNBT) at 20°C/min.

Figure S14: Absorbance spectroscopy of monomer 3 (DTDCNBT) and monomer 4 (DTDFBT) in DCM solution (λ_{max} 3 = 473 nm; λ_{max} 4 440nm).