Electronic Supplementary Information for:

Layer by layer solution processed organic solar cells based on small

molecule donor and polymer acceptor

Yifan Wang, ac Xingang Zhao, and Xiaowei Zhan*b

^a Beijing National Laboratory for Molecular Sciences and Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

^b Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China. E-mail: xwzhan@pku.edu.cn

^c University of Chinese Academy of Sciences, Beijing 100049, China.

Calculation of DIB-SQ weight content from XPS

DIB - SQ weight content = $\frac{\text{DIB - SQ weight}}{\text{DIB - SQ weight + PPDIDTT weight}}$ $= \frac{n_{sa}M_{sa}}{n_{sa}M_{sa} + n_{P}M_{P}}$ $= \frac{1}{1 + \frac{n_{P}M_{P}}{n_{sa}M_{sa}}}$ $\frac{N}{S} = \frac{2n_{P} + 2n_{sa}}{3n_{P}}$ \bigcup $\frac{n_{sa}}{N_{P}} = 1.5\frac{N}{S} - 1$ $\text{DIB - SQ weight content} = \frac{1}{\left(\frac{M_{P}}{M_{sa}\left(1.5\frac{N}{S} - 1\right)}\right) + 1}$

Where M_P is the molecular weight of repeated unit of PPDIDTT (1288); M_{SQ} is the molecular weight of DIB-SQ (554); n_p is the mole number of repeated unit of PPDIDTT; n_{SQ} is the mole number of DIB-SQ; $\frac{N}{S}$ is the atom ratio of N/S. A DIB-SQ molecule has two N atoms while a repeated unit of PPDIDTT has two N atoms and three S atoms.

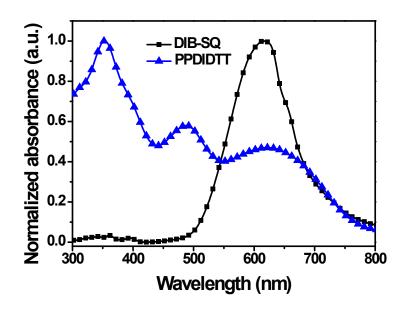


Fig. S1 UV-vis spectra of DIB-SQ and PPDIDTT films.

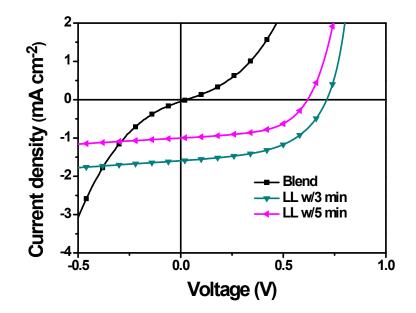


Fig. S2 J-V characteristics of DIB-SQ/ PPDIDTT blend devices and LL devices after thermal annealing at 100 °C for 3 min and 5 min.

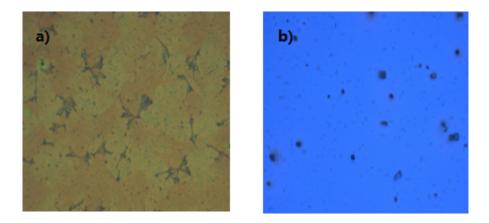
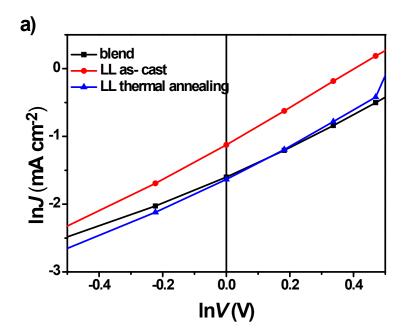
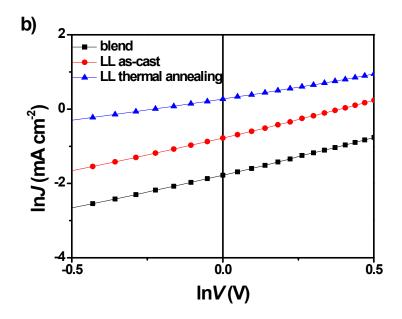




Fig. S3 Optical microscope images of a) DIB-SQ film (250 μ m × 250 μ m) and b) DIB-SQ /PPDIDTT (2:1) blend film (250 μ m × 250 μ m) on silica glass substrates.

Fig. S4 J-V characteristics under dark for a) hole-only and b) electron-only devices based on DIB-SQ/PPDIDTT blend and LL films with or without thermal annealing at 100 °C for 1 min.