Supporting Information

Solution-Processable Host Material of 1,3-Bis{3-[3-(9-carbazolyl)phenyl]-9-carbazolyl}benzene and Its Application for Organic Light Emitting Diodes Employing Thermally Activated Delayed Fluorescence

Yoshitake Suzuki^{a, b}, Qisheng Zhang^a, Chihaya Adachi^{a, *}

- ^a Center for Organic photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819- 0395, Japan
- ^b Sumitomo Riko Company, Ltd., Material Technology R&D Laboratories, 1
 Higashi 3-chome, Komaki, Aichi 485-8550, Japan
- * Electronic mail: <u>adachi@cstf.kyushu-u.ac.jp</u>

Fig. S1 The HOMO and LUMO of **CPCB** calculated at the B3LYP/6-31G* level. The calculated S_1 and T_1 energies of SPH-01 are 3.23 and 3.06 eV, respectively.

Fig. S2 The photoelectron yield spectra of the neat films of CPCB.

Fig. S3 Thermogravimetric analysis of CPCB at 1 Pa and 1 atm under N_2 .

Fig. S4 (a) EL spectra at 10 mA/cm²; (b) luminance-current density-voltage characteristics; (c) EQE-current density characteristics; and (d) luminance-voltage-operating time characteristics at fixed current densities of ITO/PEDOT (40 nm)/ CBP: 4CzIPN (30 nm)/T2T (10 nm)/BPyTP2(30 nm)/LiF(0.8 nm)/Al devices with an emitting layer annealed at different temperatures. The device with an emitting layer annealed at 50 °C performed best. Since the annealing temperature of 100 °C is higher than the glass transition temperature of CBP (62 °C), the corresponding device had a low EQE maximum due to the formation of CBP dimers, which have low triplet energy levels.

Fig. S5 Photographs of ~100 nm thin films deposited on quartz substrates after one week. (a) Vacuum-deposited CBP film; (b) spin-coated CBP film annealed at 50 $^{\circ}$ C for 10 min; (c) spin-coated CPCB film annealed at 220 $^{\circ}$ C for 10 min. The spin-coated CBP film partly crystallized, while the vacuum-deposited CBP and spin-coated CPCB films were still amorphous.

Fig. S4 ¹H NMR spectra of compound **iii**.

Fig. S5 ¹³C NMR spectra of compound **iii**.

Fig. S6 ¹H NMR spectra of compound **CPCB**.

Fig. S7 ¹³C NMR spectra of compound CPCB.