Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2014

Supporting Information

The Effects of Heavy Atoms on the Exciton Diffusion Properties in Photoactive Thin Films of Tetrakis(4-carbomethoxyphenyl)porphyrins

Angy L. Ortiz, Graham C. Collier, Dawn M. Marin, Jennifer A. Kassel, Reynolds J. Ivins, Nicholas G. Grubich, and Michael G. Walter*

[*] Prof. M. G. Walter, Corresponding Author Department of Chemistry University of North Carolina at Charlotte 214-216 Burson Chemical Laboratory Charlotte, NC 28223 (USA)

Table of Contents:

S1. Electrochemistry of TCM₄PP, TBCM₃PP and TCM₃IPP.

S2. XRD patterns of TCM₄PP, TBCM₃PP, and TCM₃IPP thin films.

S3. IPCE % spectrum of TBCM₃PP:PCBM and TCM₃IPP:PCBM devices.

S4. Steady-state PL quenching of TBCM₃PP thin films with 1:2 and 1:4 PCBM by

weight. Fluorescent lifetime decays and photophysical parameters of the derivatives in solution.

S5. Fluorescent emission spectra, lifetime decays, and photophysical parameters of the

TCMPP derivatives in solution (TCM₄PP), (TBCM₃PP), and (TCM₃IPP).

S6. Energy level diagram of TCMPP devices.

S1. Electrochemistry of TCM₄PP, TBCM₃PP and TCM₃IPP.

1

Cyclic voltammetry (CV) scans of TCM₄PP, TBCM₃PP, and TCM₃IPP show two reversible oxidations and reductions for each derivative (Figure S1b). The redox potentials of all three derivatives are similar, with a slight cathodic shift of E^{1}_{ox} and E^{1}_{red} for the TBCM₃PP/TCM₃IPP derivatives (10 – 20 mV). The HOMO/ LUMO energies in eV for each derivative were calculated by converting the redox potentials found using CV with a Ag/Ag⁺ electrode to redox potential against a saturated calomel electrode (SCE) followed by the addition of 4.4 V to give the final energy in eV. The low-lying HOMO levels for the carboxyphenyl derivatives (TBCM₃PP / TCM₃IPP) were calculated to be close to that of TCM₄PP (~ -5.6 eV). Table 1 shows the redox potentials for all the porphyrins characterized through CV studies and calculated energy levels. Altering one substituent on the phenyl portion of the porphyrin from a carbomethoxy to a halogen does not significantly affect the redox potentials of the porphyrin.

Figure S1. (a) Tetraphenylporphyrins synthesized. (b) CV scans of TCM_4PP , $TBCM_3PP$, and TCM_3IPP in dichloromethane. Scan rate was 100 mV s⁻¹ with 0.1 M TBAH.

Compound	E ¹ _{ox} (V)	E ² _{ox} (V)	E ¹ _{red} (V)	E ² _{red} (V)	HOMO (eV)	LUMO (eV)	Energy Gap (eV)
TCM ₄ PP	0.69	0.98	-1.59	-1.89	-5.63	-3.35	2.3
TBCM ₃ PP	0.67	0.95	-1.61	-1.90	-5.61	-3.33	2.3
TCM ₃ IPP	0.67	0.96	-1.60	-1.90	-5.61	-3.34	2.3

Table S1. CV^a data of measured compounds and calculated HOMO/LUMO energy levels.

^aAll the redox potentials were measured relative to Fc/Fc⁺.

Figure S2. XRD patterns of TCM₄PP, TBCM₃PP, and TCM₃IPP thin films.

Figure S3. IPCE % spectrum of TBCM₃PP:PCBM and TCM₃IPP:PCBM devices.

Figure S4. Steady-state PL quenching of TBCM₃PP thin films with 1:2 and 1:4 PCBM by weight.

Figure S5. Fluorescent emission spectra, singlet lifetime decays $({}^{\tau}f)$, quantum yields $({}^{\phi}f)$, rate of radiative decay $({}^{k}r)$, and singlet oxygen quantum yield $({}^{\phi}{}_{\Delta})$ of the TCMPP derivatives in solution (TCM₄PP), (TBCM₃PP), and (TCM₃IPP).

Figure S6. Energy level diagram of porphyrin (TCMPP derivatives) - PCBM organic photovoltaic devices with approximate porphyrin triplet state T_1 energies.