Supporting Information

Flexible quantum dot-PVA composites for white LEDs

Arzu Coşgun,^{1,2} Renli Fu,^{1*} Weina Jiang,¹ Jianhai Li,² Jizhong Song,² Xiufeng Song,² and Haibo Zeng^{2*}

¹State Key Laboratory of Mechanics and Control of Mechanical Structures & College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China ²Institute of Optoelectronics & Nanomaterials (IONS), College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China *Corresponding Emails: zeng.haibo.nano@gmail.com (H. Z.); rlfu@nuaa.edu.cn (R. F.)

Figure S1. Temporal evolution of the PL spectra of ZnSe:Mn@MPA nanocrystals

Figure S2. Temporal evolution of the PL spectra during the overcoating of ZnSe:Mn QDs with the ZnS shell.

Figure S3. PL Intenstiy of ZnSe:Mn/ZnSQDs/PVA according different concentration ratio.

Figure S4.TEM images of the ZnSe:Mn core NCs.

Figure S5. Temporal evolution of EL spectra of QDs-PVA composite without silica coating.

Figure S6. PL spectra of fresh synthesized ZnSe:Mn/ZnS-PVA (red) and after the 9 month later sample (black).

Name of the Article	QuantumYield (QY) value
A. Aboulaich, L. Balan, J. Ghanbaja, G. Medjahdi, C. Merlin, R. Schneider, <i>Chem. Mater.</i> , 2011, 23 , 3706 – 3713.	12%.
Wang C, Gao X, Ma Q, Xu X, J. Mater. Chem., 2009, 19, 7016.	2,4%
P. Shao, Q. Zhang, Y. Li, H. Wang, J. Mater. Chem. 2011, 21, 151.	4.8%,
F. Zheng, W. Ping, Z. Xinhua, Y. Yong-Ji, Nanotechnology, 2010, 21, 305604.	30-35%
X. Tongtong, W. Song, W. Xiaojun, L. Jiaqing, C. Jiyao, L. Huili, P. Likun, S. Zhuo, <i>Chem. Commun.</i> , 2013, 49 , 9045-9047.	21.86%
M. Geszke, M. Murias, L. Balan, G. Medjahdi, J. Korczynski, M. Moritz, J. Lulek, R.Schneider, <i>Acta Biomaterialia.</i> , 2011, 7, 1327–1338.	22%
R. Ban, J. Li, J. Cao, P. Zhang, J. Zhang, J. Zhu, Anal. Methods, 2013, 5, 5929.	27.4%
B. Luong, E. Hyeong, S. Yoon, J. Choiand, N. Kim, RSC Adv., 2013, 3, 23395.	27.6%
J. Zheng, X. Yuan, M. Ikezawa, P. Jing, X. Liu, Z. Zheng, X. Kong, J. Zhao, Y.Masumoto, <i>J. Phys. Chem.C.</i> , 2009, 113 , 16969–16974.	35%
J. Ke, X. Li, Q. Zhao, Y. Hou, J. Chen, Water. Sci. Rep., 2014, 4, 5624;	25%
D. Zhu, X. Jiang, C. Zhao, X. Sun, J. Zhang, J. Zhu , <i>Chem. Commun.</i> , 2010, 46, 5226–5228.	25%
H. Zhang, X. Gao, S. Liu, X. Su, J. Nanopart. Res., 2013, 15, 1749.	4.8 %
B. Dong, L. Cao, G. Su, W. Liu, J. Phys. Chem. C, 2012, 116, 12258 – 12264.	24.0%
A. Aboulaich, M. Geszke, L. Balan, J. Ghanbaja, G.Medjahdi, R. Schneider, <i>Inorg. Chem.</i> , 2010, 49 ,10940.	9%

Table 1. Quantum yield (QY) values of Mn:ZnSe d-dots prepared in aqueous media.