Electronic Supplementary Information for

Solution Processed F Doped ZnO (ZnO:F) for Thin Film Transistors and Improved Stability Through Co-Doping with Alkali Metals

Jingjing Chang,^{*a*} Zhenhua Lin,^{*b*} Ming Lin,^{*c*} Chunxiang Zhu,^{*b*} Jie Zhang,^{*c*}, * and Jishan $Wu^{a,c,*}$

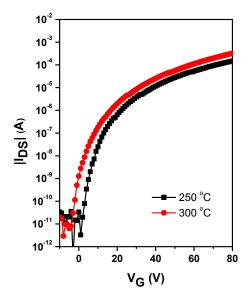
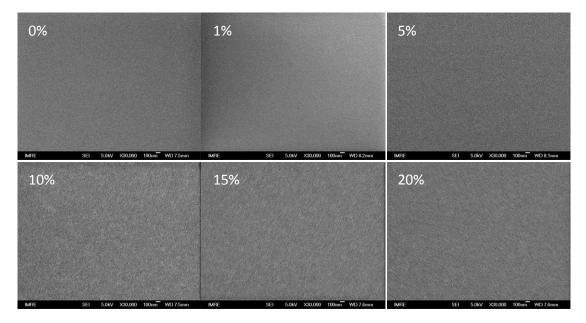
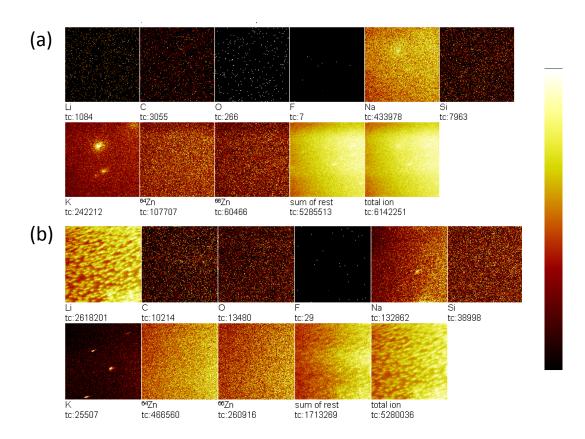
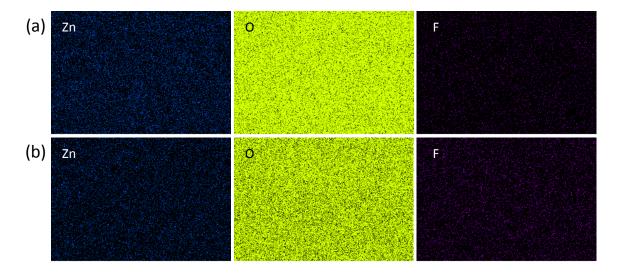


Fig. S1 The transfer characteristics of the F doped ZnO TFTs under different annealing temperatures.


Fig. S2 The FESEM images of the F-doped ZnO films with different molar ratios.

Li content (ratio)	$\mu [cm^2 V^{\text{-1}} s^{\text{-1}}] (\ \mu_{max})$	V _T [V]	On/off
1%	1.8(3.1)	27-31	10 ⁷
5%	4.8(5.7)	27-32	10 ⁷
10%	5.3(6.5)	28-33	10 ⁷

Table S1. The electrical characteristics of solution processed Li doped ZnO TFTs as a function of the doping content.

Fig S3. The TOF-SIMS results of the pristine (a) and 10% LiF doped ZnO (b) after thermal annealing at 300 °C for 1h in air.

Fig. S4 The EDX elemental mapping of Zn, O, F for the pristine (a) and 10% LiF doped ZnO (b) after thermal annealing at 300 °C for 1h in air.

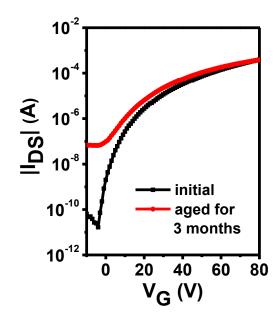


Fig. S5 The transfer characteristics of the F doped ZnO TFTs with aged precursor solution.