Supporting Information Mechanochromic Luminescence of Halide-substituted Difluoroboron β-Diketonate Dyes

William A. Morris, Tiandong Liu, and Cassandra L. Fraser*

Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA

Synthesis of β-Diketones. The β-diketone ligands were prepared by Claisen condensation in the presence of NaH as previously described.¹ A representative synthesis is as follows. **Dbm(F)OC₁₂H₂₅**. 4-Acetophenone (500 mg, 4.16 mmol), ethyl 4-fluorobenzoate (841 mg, 4.99 mmol) and THF (20 mL) were added sequentially to a 50 mL round bottom flask. After stirring the mixture for 10 min, a suspension containing NaH (157 mg, 6.24 mmol) in THF (10 mL) was added dropwise at room temperature under N₂. The mixture was stirred and refluxed at 60 °C for 20 h. After cooling to room temperature, saturated aqueous NH₄Cl (1 mL) was added to quench the reaction. The aqueous phase was extracted with CH₂Cl₂ (3 × 20 mL). The combined organic layers were washed with distilled water (2×10 mL) and brine (10 mL), and dried over Na₂SO₄ before concentration *in vacuo*. The residue was purified by column chromatography on silica gel eluting with hexanes/ethyl acetate (6:1) to give crude 4-fluorobenzoyl 4'-dodecyloxybenzoylmethane as a white solid. The crude product was used for the next step without further purification.

Difluoroboron Diketonate Complex Synthesis. A representative synthesis is as follows. **BF₂dbm(F)OC₁₂H₂₅ (2)**. Boron trifluoride diethyl etherate (627 µL, 4.99 mmol) was added to a solution of the fluoro ligand in 20 mL CH₂Cl₂ at room temperature under N₂. The mixture was stirred for 12 h. The solvent was removed *in vacuo*. The residue was recrystallized from hexanes/acetone (4:1) to give **2** (418 mg, 71%) as a yellow solid. ¹H NMR (300 MHz, CDCl₃) δ 8.18 - 8.12 (m, 4H, 2, 6-Ar*H*, 2', 6'-Ar*H*), 7.26 - 7.19 (m, 2H, 3, 5-Ar*H*), 7.03 (s, 1H, COC*H*CO), 7.01 (d, 2H, *J* = 9.0 Hz, 3', 5'-Ar*H*), 4.08 (t, 2H, *J* = 6.3 Hz, OC*H*₂Cl₁₁H₂₃), 1.88 - 1.78 (m, 2H, OCH₂C*H*₂C₁₀H₂₁), 1.49 - 1.27 (m, 18H, OCH₂CH₂C₉*H*₁₈CH₃), 0.88 (t, 3H, *J* = 6.3 Hz, CH₂C*H*₃); MS (MALDI): m/z calculated for C₁₆H₁₂BF₃O₃ 474.26; found 497.15 [M+Na].

BF₂dbmOC₁₂H₂₅ (1). This compound has been previously synthesized and characterized.² This compound was synthesized as previously described.² ¹H NMR (300 MHz, CDCl₃) δ 8.16 - 8.12 (m, 4H, 2, 6-Ar*H*, 2', 6'-Ar*H*), 7.68 (t, 1H, J = 6.0 Hz, 4-Ar*H*), 7.55 (t, 2H, J = 7.8 Hz, 3, 5-Ar*H*), 7.10 (s, 1H, COC*H*CO), 7.02 (d, 2H, J = 9.0 Hz, 3', 5'-Ar*H*), 4.08 (t, 2H, J = 6.0 Hz, OCH₂Cl₁H₂₃), 1.88 - 1.78 (m, 2H, J = 6.0 Hz, OCH₂CH₂Cl₁₀H₂₁), 1.50-1.27 (m, 18H, OCH₂CH₂C₉H₁₈CH₃), 0.88 (t, 3H, J = 6.0 Hz, OC₂₄H₂₂CH₃).

BF₂dbm(Cl)OC₁₂H₂₅ (3). The same method for **2** was used with the ligand for **3**. Recrystalization over hexanes/acetone (3:1) to give **3** (361 mg, 74%) as a yellow solid. ¹H NMR (300 MHz, CDCl₃) δ 8.14 (d, 2H, J = 9.0 Hz, 2', 6'-ArH), 8.06 (d, 2H, J = 8.7 Hz, 2, 6-ArH), 7.52 (d, 2H, J = 8.7 Hz, 3, 5- ArH), 7.05 (s, 1H, COCHCO), 7.01 (d, 2H, J = 9.0 Hz, 3', 5'-ArH), 4.08 (t, 2H, J = 6.3 Hz, OCH₂C₁₁H₂₃), 1.88 - 1.79 (m, 2H, OCH₂CH₂C₁₀H₂₁), 1.49 - 1.27 (m, 18H, OCH₂CH₂C₉H₁₈CH₃), 0.88 (t, 3H, J = 6.3 Hz, CH₂CH₃); MS (MALDI): m/z calculated for C₂₇H₃₄BClF₂O₃ 490.23; found 513.14 [M+Na].

BF₂dbm(Br)OC₁₂H₂₅ (4). The same method for **2** was used with the ligand for **4**. Recrystalization over hexanes/acetone (3:1) to give **4** (524 mg, 67%) as a yellow solid. ¹H NMR (300 MHz, CDCl₃) δ 8.13 (d, 2H, J = 9.3 Hz, 2', 6'-Ar*H*), 7.96 (d, 2H, J = 8.7 Hz, 2, 6-Ar*H*), 7.67 (d, 2H, J = 8.7 Hz, 3, 5- Ar*H*), 7.05 (s, 1H, COC*H*CO), 7.00 (d, 2H, J = 9.0 Hz, 3', 5'-Ar*H*), 4.08 (t, 2H, J = 6.3 Hz, OC*H*₂Cl₁H₂₃), 1.88 - 1.79 (m, 2H, OCH₂CH₂Cl₁₀H₂₁), 1.50 - 1.27 (m, 18H, OCH₂CH₂C₉H₁₈CH₃), 0.88 (t, 3H, J = 6.3 Hz, CH₂CH₃); MS (MALDI): m/z calculated for C₂₇H₃₄BBrF₂O₃ 534.18; found 557.08 [M+Na].

BF₂dbm(I)OC₁₂H₂₅ (5). This compound has been previously synthesized.³ The same method for **2** was used with the ligand for **5**. Recrystalization over hexanes/acetone (2:1) to give **5** (620 mg, 68%) as a yellow solid. ¹H NMR (300 MHz, CDCl₃) δ 8.14 (d, 2H, *J* = 9.0 Hz, 2', 6'-Ar*H*), 7.91 (d, 2H, *J* = 8.7 Hz, 2, 6-Ar*H*), 7.81 (d, 2H, *J* = 8. 7 Hz, 3, 5-Ar*H*), 7.05 (s, 1H, COC*H*CO), 7.01 (d, 2H, *J* = 9.0 Hz, 3', 5'-Ar*H*), 4.08 (t, 2H, *J* = 6.6 Hz, OC*H*₂C₁₁H₂₃), 1.88 - 1.79 (m, 2H, OCH₂C*H*₂C₁₀H₂₁), 1.50 - 1.27 (m, 18H, OCH₂CH₂C₉*H*₁₈CH₃), 0.88 (t, 3H, *J* = 6.0 Hz, CH₂C*H*₃); MS (MALDI): m/z calculated for C₂₇H₃₄BIF₂O₃ 582.16; found 605.07 [M+Na].

Compound	Melting Point (°C)
1	133-135
2	140-142
3	148-150
4	151-154
5	145-148

Table S1. Melting Points of Difluoroboron β-Diketonate Dyes 1-5.

Figure S1. UV/vis absorption spectra of $BF_2dbm(X)OC_{12}H_{25}$ (X = F, Cl, Br, I) dyes in CH_2Cl_2 solution.

Figure S2. Steady-state fluorescence spectra of $BF_2dbm(X)OC_{12}H_{25}$ (X = F, Cl, Br, I) dyes in CH_2Cl_2 solution.

Figure S3. Normalized emission spectra of BF₂dbm(X)OC₁₂H₂₅ dyes as films on weighing paper comparing thermally annealed (TA) and smeared (SM) states ($\lambda_{ex} = 369$ nm) (room temperature, air).

Dye	Thermally Annealed λ_{em}^{b} [nm]	Thermally Annealed τ ^c [ns]	Smeared λ_{em} [nm]	Smeared τ [ns]	$\Delta au_{ m PW0}{}^{ m d}$ [ns]
Н	475	0.42 (7.30%) 5.30 (59.50%) 12.7 (33.20%) 7.40 (τ _{pw0})	487	7.36 (45.76%) 0.89 (8.20%) 27.2 (46.05%) 16.0 (τ _{pw0})	8.60
F	467	0.35 (16.98%) 2.54 (75.44%) 11.24 (7.58%) 2.83 (τ _{pw0})	507	9.58 (39.13%) 1.23 (7.75%) 30.4 (53.11%) 20.0 (τ _{pw0})	17.2
Cl	483	0.39 (9.18%) 4.35 (67.77%) 9.31 (23.05%) 5.13 (τ _{pw0})	514	7.25 (53.31%) 0.87 (9.04%) 25.2 (37.65%) 13.4 (τ _{pw0})	8.27
Br	483	0.97 (89.75%) 5.16 (10.25%) 1.40 (τ _{pw0})	519	4.27 (49.87%) 0.56 (15.09%) 12.7 (35.04%) 6.66 (τ _{pw0})	5.26
Ι	502	0.23 (31.45%) 1.61 (63.60%) 3.99 (4.94%) 1.29 (τ _{pw0})	513	0.36 (52.21%) 1.40 (43.48%) 4.94 (4.31%) 1.01 (τ _{pw0})	-0.28

Table S2. Emission Maxima and Lifetimes with % Weighting Factors for the Dyes as Films on Weighing Paper at Room Temperature under Air.^a

^a $\lambda_{ex} = 369$ nm.

^b Emission maximum; fluorescence.

^c Fluorescence lifetime.

Note: Emission lifetimes were multi-exponential, and the decay traces of emission intensity at λ_{em} and the % weighting factors (WF) were analyzed using DataStation version 2.6 software from Horiba Jobin Yvon. τ_{pw0} was calculated as follows:

$$\tau_{pw0} = \sum_{i=1}^{N} WF_i \cdot \tau_i$$

where N is the number of decay components, WF_i is the weighting factor, τ_i is the component of decay lifetimes, and $\tau_{_{PW0}}$ is the pre-exponential weighted lifetime.⁴

Figure S4. Full width at half maximum (FWHM) values for emission peaks monitored through annealing and smearing cycles ($\lambda_{ex} = 369 \text{ nm}$) (room temperature, air).

Figure S5. Emission intensities of dyes as films on weighing paper monitored through cycles of smearing and annealing at room temperature in air ($\lambda_{ex} = 369$ nm). The intensities were recorded in photon counts per second (CPS) and shown as CPS/10⁶.

Dye	Thermally	Annealed	Smeared			
	λ_{em}^{b}	FWHM ^c	λ_{em}	FWHM		
	[nm]	[ns]	[nm]	[nm]		
Н	504	71	506	79		
F	474	49	521	89		
Cl	497	67	530	68		
Br	497 ^d	67	535 ^f	123		
Ι	489 ^e	84	502 ^g	88		
$a \lambda_{ex} = 369 \text{ nm.}$						
^b Emission maximum; fluorescence.						
^c Full Width at Half Maximum.						
^d Phosphorescence evident; $\lambda_{phos} = 564$ nm.						
^e Phosphorescence evident; $\lambda_{phos} = 570$ nm.						

Table S3. Total Emission for Boron Dyes as Films on Weighing Paper at 77K in liquid N_2 .^a

^f Phosphorescence evident: $\lambda_{phos} = 561$ nm.

^g Phosphorescence evident: $\lambda_{\text{phos}} = 579 \text{ nm}.$

Figure S6. Normalized delayed emission spectra of $BF_2dbm(X)OC_{12}H_{25}$ dyes on weighing paper in both thermally annealed (TA) and smeared (SM) states at 77K in liquid N₂ ($\lambda_{ex} = 369$ nm).

Dye	Thermally Annealed λ_{phos}^{b} [nm]	Thermally Annealed τ_{phos}^{c} [ms]	Smeared $\lambda_{ m phos}$ [nm]	Smeared τ_{phos} [ms]	Δau_{PW0} [ms]		
Н	562	107 (18.43%) 10.3 (11.47%) 748 (59.16%) 1.25 (10.93%) 463 (τ _{pw0})	563	194 (13.04%) 1010 (81.68%) 17.1 (3.37%) 1.47 (1.92%) 851 (τ _{pw0})	388		
F	577	44.1 (47.05%) 545 (40.90%) 3.80 (12.05%) 244 (τ _{pw0})	569	143 (10.22%) 18.7 (4.19%) 1050 (83.93%) 1.28 (1.66%) 897 (τ _{pw0})	653		
Cl	564	8.80 (26.49%) 65.1 (20.71%) 553 (34.62%) 1.40 (18.18%) 208 (τ _{pw0})	578	83.2 (9.15%) 581 (81.75%) 8.50 (5.05%) 1.98 (4.05%) 483 (τ _{pw0})	275		
Br	567	$\begin{array}{c} 3.94 \ (6.61\%) \\ 22.7 \ (50.02\%) \\ 218 \ (3.56\%) \\ 58.4 \ (39.80\%) \\ 42.6 \ (\tau_{pw0}) \end{array}$	580	44.5 (33.33%) 4.62 (3.28%) 106 (63.39%) 82.0 (τ _{pw0})	39.4		
Ι	573	1.57 (14.20%) 17.6 (31.85%) 233 (1.87%) 8.10 (52.08%) 14.4 (τ _{pw0})	580	96.1 (0.52%) 1480 (1.37%) 14.7 (98.11%) 35.2 (τ _{pw0})	20.8		
$^{a}\lambda_{ex} = 369 \text{ nm.}$							
^o emission m	aximum; phospho	rescence.					
~ Phosphores	scence metime.						

Table S4. Delayed Emission Maxima and Lifetimes with % Weighting Factors for the Dyes as Films on Weighing Paper at 77K in liquid N_2 .^a

Figure S7. Emission spectra of boron dyes as spin-cast films on glass ($\lambda_{ex} = 369$ nm) (room temperature, air). The dyes were thermally annealed (TA), smeared (SM), and then the emission spectra were monitored over time. After three weeks, the films were reannealed (RA). Note: d = days.

Dye	As-spun λ_{em} [nm]	As-spun τ [ns]	As-spun FWHM [nm]	Thermally Annealed λ_{em} [nm]	Thermally Annealed τ [ns]	Thermally Annealed FWHM [nm]	$\Delta \tau_{PW0}(ns)$
Н	524	16.6 (29.75%) 2.83 (3.51%) 40.9 (66.74%) 32.3 (τ _{pw0})	131	468	$\begin{array}{c} 2.12 \\ (16.07\%) \\ 6.54 \\ (54.42\%) \\ 16.4 \\ (29.50\%) \\ 8.74 (\tau_{pw0}) \end{array}$	74	-23.6
F	517	13.3 (38.23%) 37.7 (61.77%) 28.4 (τ _{pw0})	113	445	1.52 (90.99%) 8.77 (9.01%) 2.17 (τ _{pw0})	48	-26.2
Cl	538	11.3 (62.35%) 34.8 (37.65%) 20.1 (τ _{pw0})	124	484	5.20 (56.21%) 8.70 (43.79%) 6.73 (τ _{pw0})	74	-13.4
Br	520	1.25 (13.76%) 5.60 (60.48%) 14.3	105	483	1.05 (95.70%) 5.43 (5.30%) 1.28 (τ _{pw0})	63	-5.96
Ι	515	0.74 (87.99%) 2.89 (12.01%) 1.00 (τ _{pw0})	106	480	1.66 (54.02%) 3.05 (45.98%) 2.30 (τ _{pw0})	72	1.30

^a $\lambda_{ex} = 369$ nm.

^b Emission maximum; fluorescence.

^c Fluorescence lifetime.

Table S5. Emission Maxima and Lifetimes with % Weighting Factors for the Dyes asSpin-cast Films on Glass at Room Temperature under Air.^a

Figure S8. X-ray diffraction patterns of the H, Cl, and Br dyes as-spun (AS), thermally annealed (TA), and smeared (SM).

Figure S9. Emission spectra of boron dyes as bulk powders ($\lambda_{ex} = 369 \text{ nm}$) (room temperature, air). As-isolated (AI), thermally annealed (TA), and ground (GR) powders are compared.

Figure S10. The BF₂dbm(X)OC₁₂H₂₅ dyes as bulk powders. As-isolated powders (AI) from acetone/hexanes were thermally annealed (TA) at the their respective optimum annealing temperatures for 3 hours. AI powders were also ground (GR) vigorously for \sim 30 minutes using a mortar and pestle.

Dye	As-Isolated		Thermally Annealed		Ground		
	$\lambda_{em}{}^{b}$	FWHM ^c	$\lambda_{em}{}^{b}$	FWHM ^c	$\lambda_{em}{}^{b}$	FWHM ^c	
	[nm]	[nm]	[nm]	[nm]	[nm]	[nm]	
Н	485	62	482	61	488	69	
F	509	89	474	43	503	79	
Cl	506	63	488	45	509	81	
Br	504	66	489	56	511	85	
Ι	483	52	484	50	506	82	
$a \lambda_{ex} = 369 \text{ nm.}$							
^b emission maximum; fluorescence.							

Table S6. Fluorescence Properties of the Boron Dyes as Bulk Powders.^a

^c Full Width at Half Maximum.

Figure S11. Differential scanning calorimetry (DSC) thermograms of all dyes. The 2nd cycle is shown for all samples.

References

- (1) Zhang, G.; Fiore, G. L.; St. Clair, T. L.; Fraser, C. L. Macromolecules 2009, 42, 3162.
- (2) Nguyen, N. D.; Zhang, G.; Lu, J.; Sherman, A. E.; Fraser, C. L. J. Mater. Chem. 2011, 21, 8409.
- (3) Zhang, G.; Lu, J.; Fraser, C. L. Inorg. Chem. 2010, 49, 10747.
- (4) Carraway, E. R.; Demas, J. N.; DeGraff, B. A.; Bacon, J. R. Anal. Chem. 1991, 63, 337.