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S1 Selection Rules

S1.1 Selection rules for transition dipole moment, spin-orbit coupling, and vibronic coupling

The Nth excited electronic state |N,Γ,γ;S,M⟩ is labeled by the quantum number of the spin angular mo-

mentum, S, the quantum number of the z component of the spin angular momentum, M, the irreducible

representation (irrep) Γ, and γ (γ = 1, . . . ,dim(Γ)), which distinguishes the irrep of a degenerate Γ.

The transition dipole moment (TDM) is given by

µµµN1Γ1S1→N2Γ2S2
= ⟨N2,Γ2,γ2;S2,M2|µ̂µµ|N1,Γ1,γ1;S1,M1⟩, (1)

where µ̂µµ is the electric dipole moment operator and the initial and final states are denoted by subscripts 1

and 2, respectively. The electric dipole moment operator is written as

µµµ = ∑
i
−eri, (2)

where ri indicates the position vector for electron i. In the case of S1 = S2, forbidden/allowed of a transition

depends on the combination of Γ1 and Γ2. Otherwise, it is forbidden.

We consider the one-electron term of the spin-orbit coupling as the origin of the intersystem crossing.1

The one-electron term of the spin-orbit integral is given by the matrix element of the one-electron part of

the spin-orbit coupling operator:

ζN1Γ1S1→N2Γ2S2 = ⟨N2,Γ2,γ2;S2,M2|ĤSO|N1,Γ1,γ1;S1,M1⟩. (3)

The spin-orbit coupling operator1–3 is written as

ĤSO = ∑
i

∑
A

α2ZA

2r3
iA

l̂lli,A · ŝi, (4)

where riA indicates the distance between atom A and electron i, ŝi and l̂lli,A denote the spin and orbital angular

moment operators, respectively, ZA indicates the atomic charge, and α is the fine-structure constant. Here,

we replace ZA by the effective nuclear charge ZA,eff
3 to incorporate the two-electron term of the spin-orbit

coupling. Accordingly,

ζN1Γ1S1→N2Γ2S2 =
α2

2 ∑
i

∑
A
⟨N2,Γ2,γ2|

ZA,eff

r3
iA

l̂lli,A|N1,Γ1,γ1⟩ · ⟨S2,M2|ŝi|S1,M1⟩. (5)

An intersystem crossing is forbidden if the matrix element of the orbital angular momentum is equal to zero.

Because the one-electron operators of the electric dipole moment µµµ =−er̂ and orbital angular momentum
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l̂ll are tensor operators, we can derive their selection rules based on their irreps: If a tensor operator belongs

to Γ3 irrep and the inclusion relation4

Γ2 ∈ Γ3 ×Γ1 (6)

holds, the transition between Γ1 and Γ2 states is allowed; otherwise, the transition is forbidden. For the

electric dipole and spin-orbit interactions, we will discuss the allowed or forbidden pairs of irreps for some

point groups later.

In addition to the electric dipole and spin-orbit couplings we discuss the selection rule for the vibronic

coupling. The vibronic coupling constant (VCC) is defined by

VN1Γ1γ1N2Γ2γ2,N3Γ3γ3 =

⟨
N2,Γ2,γ2

∣∣∣∣∣
(

∂ Ĥ
∂QN3Γ3γ3

)
R0

∣∣∣∣∣N1,Γ1,γ1

⟩
, (7)

where Ĥ denotes the molecular Hamiltonian, QN3Γ3γ3 denotes the normal coordinate for normal mode

N3Γ3γ3, and R0 denotes the equilibrium nuclear configuration for the reference state5. When we con-

sider the transition N1Γ1γ1 → N2,Γ2,γ2 the N1Γ1γ1 state at R0 should be taken as the reference state. The

diagonal VCC with N1 = N2, Γ1 = Γ2, and γ1 = γ2 gives rise to vibrational relaxation. The off-diagonal

VCC with N1 ̸= N2, Γ1 ̸= Γ2, or γ1 ̸= γ2 is a factor of the rate of internal conversion.
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S1.2 D2h

Table S1: Character table for D2h.6

E C2z C2y C2x I σz σy σx Base

Ag 1 1 1 1 1 1 1 1 x2,y2,z2

B1g 1 1 −1 −1 1 1 −1 −1 xy Lz

B2g 1 −1 1 −1 1 −1 1 −1 xz Ly

B3g 1 −1 −1 1 1 −1 −1 1 yz Lx

Au 1 1 1 1 −1 −1 −1 −1 xyz

B1u 1 1 −1 −1 −1 −1 1 1 z pz

B2u 1 −1 1 −1 −1 1 −1 1 y py

B3u 1 −1 −1 1 −1 1 1 −1 x px
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S1.3 D3h

Character table for D3h is shown in Table S26. The x−, y−, and z− components of the electric dipole

moment operator µ̂µµ belong to E ′, and E ′, and A′′
2 , respectively. The orbital angular momentum operator

components, l̂x, l̂y, and l̂z, belong to E ′′, and E ′′, and A′, respectively. The selection rules can be obtained

from Table S2. In the case of the selection rule for x- and y− components of electric dipole transition which

transform as the E
′

irreducible representation (irrep), the direct product of the irreps for the operator and

each electronic state is decomposed as follows:

E ′×A′
1 = E ′, E ′×A′

2 = E ′, E ′×A′′
1 = E ′′, E ′×A′′

2 = E ′′,

E ′×E ′ = A′
1 +A′

2 +E ′, E ′×E ′′ = A′′
1 +A′′

2 +E ′′. (8)

Therefore, the pair of irreps for electronic states (A′
1,E

′), (A′
2,E

′), (A′′
1,E

′′), (A′′
2,E

′′), (E ′,E ′), (E ′′,E ′′) are

allowed for the electric dipole transition in the x- or y- direction. The selection rule in the electric dipole

transition is summarised in Table S3. One sees that the ratio of forbidden irrep pairs are 20 of 36. The

forbidden ratio for D3h is lower than that for D2h (Table 6) although the order for D3h is higher than that

for D2h. This indicates the importance of the inversion symmetry since D3h does not contain the inversion

while D2h does.

The selection rule for the orbital angular momentum is summarised in Table S4. The forbidden ratio of

l̂ll is the same as that of r. The D3h symmetry gives small forbidden ratio, also originating from the lack of

inversion symmetry.

Table S2: Character table for D3h
6

E 2IC6 2C3 σh 3C2y 3σx Base

A′
1 1 1 1 1 1 1 y3 −3x2y

A′
2 1 1 1 1 -1 -1 x3 −3xy2 lz

A′′
1 1 -1 1 -1 1 -1

A′′
2 1 -1 1 -1 -1 1 z pz

E ′′ 2 1 -1 -2 0 0 {zx,zy} {lx, ly}

E ′ 2 -1 -1 2 0 0 {x,y} {px, py}
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Table S3: Selection rule for the electric dipole moment operator in the D3h symmetry.

A′
1 A′

2 A′′
1 A′′

2 E ′ E ′′

A′
1 × × × z {x,y} ×

A′
2 × z × {x,y} ×

A′′
1 × × × {x,y}

A′′
2 × × {x,y}

E ′ {x,y} z

E ′′ {x,y}

Table S4: Selection rule for the orbital angular momentum operator in the D3h symmetry.

A′
1 A′

2 A′′
1 A′′

2 E ′ E ′′

A′
1 × lz × × × {lx, ly}

A′
2 × lz × × {lx, ly}

A′′
1 × × {lx, ly} ×

A′′
2 × {lx, ly} ×

E ′ lz {lx, ly}

E ′′ lz
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S1.4 D4h

Character table for D4h is listed in Table S56. The x, y, and z components of the electric dipole moment

operator µ̂µµ belong to Eu, and Eu, and B1u, respectively. On the other hand, the orbital angular momentum

operator components, l̂x, l̂y, and l̂z belong to Eg, and Eg, and A2g, respectively. The selection rules can be

obtained from Table S5. In the case of the selection rule for x- and y− components of electric dipole tran-

sition which transform as the Eu irreps, the direct product of the irreps for the operator and each electronic

state is decomposed as follows:

Eu ×A1g = Eu, Eu ×A2g = Eu, Eu ×B1g = Eu, Eu ×B2g = Eu,

Eu ×Eg = A1u +A2u +B1u +B2u

Eu ×A1u = Eg, Eu ×A2u = Eg, Eu ×B1u = Eg, Eu ×B2u = Eg,

Eu ×Eu = A1g +A2g +B1g +B2g. (9)

Hence, the electric dipole transition in the x-or y- direction is allowed when the pair of irreps for electronic

states (Γ1,Γ2) is (A1g, Eu), (A2g, Eu), (B1g, Eu), (B2g, Eu), (A1u, Eg), (A2u, Eg), (B1u, Eg), or (B2u, Eg). Thus,

we can obtain the selection rule for the electric dipole transition in the x-and y- direction. Table S6 is the

summary of the selection rule for the electric dipole transition. Because of the Laporte rule, the ratio of the

forbidden pairs are over 50%; the forbidden pairs are 74 of 100.

The selection rule for the orbital angular momentum is summarised in Table S7. The selection rule of l̂ll

is almost the same as that of r̂ except for the difference of gerade and ungerade. Therefore, the same ratio

of forbidden irrep pairs is obtained.
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Table S5: Character table for D4h
6

E 2C4 C2
4 2C′

2 2C′′
2 I 2IC4 σh 2σv 2σd Base

A1g 1 1 1 1 1 1 1 1 1 1 z2,x2 + y2

A2g 1 1 1 -1 1 1 1 1 -1 -1 xy(x2 − y2) lz

B1g 1 -1 1 1 1 -1 -1 1 1 -1 x2 − y2

B2g 1 -1 1 -1 1 -1 -1 1 -1 1 xy

Eg 2 0 -2 0 2 0 0 -2 0 0 {xz,yz} {lx, ly}

A1u 1 1 1 1 -1 -1 -1 -1 -1 -1 xyz(x2 − y2)

A2u 1 1 1 -1 -1 -1 -1 -1 1 1 z pz

B1u 1 -1 1 1 -1 1 1 -1 -1 1 xyz

B2u 1 -1 1 -1 -1 1 1 -1 1 -1 z(x2 − y2)

Eu 2 0 -2 0 -2 0 0 2 0 0 {x,y} {px, py}

Table S6: Selection rule for the electric dipole moment operator in the D4h symmetry.

A1g A2g B1g B2g Eg A1u A2u B1u B2u Eu

A1g × × × × × × z × × {x,y}

A2g × × × × z × × × {x,y}

B1g × × × × × × z {x,y}

B2g × × × × z × {x,y}

Eg × {x,y} {x,y} {x,y} {x,y} z

A1u × × × × ×

A2u × × × ×

B1u × × ×

B2u × ×

Eu ×
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Table S7: Selection rule for the orbital angular momentum operator in the D4h symmetry.

A1g A2g B1g B2g Eg A1u A2u B1u B2u Eu

A1g × lz × × {lx, ly} × × × × ×

A2g × × × {lx, ly} × × × × ×

B1g × lz {lx, ly} × × × × ×

B2g × {lx, ly} × × × × ×

Eg lz × × × × ×

A1u × lz × × {lx, ly}

A2u × × × {lx, ly}

B1u × lz {lx, ly}

B2u × {lx, ly}

Eu lz
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S2 Theory of Vibronic Coupling Density

Small diagonal and off-diagonal VCCs give rise to suppression of vibrational relaxations and nonradia-

tive vibronic transitions, respectively. Analyses of diagonal and off-diagonal vibronic coupling densities

(VCDs) enable us to design molecules with small VCCs. In this subsection, we summarise the relation be-

tween the VCCs and VCDs. For simplicity, the VCC VN1Γ1γ1N2Γ2γ2,αΓ3γ3 is written as Vml,α hereafter, where

m = N1Γ1γ1, l = N2Γ2γ2, and α = N3Γ3γ3.

The diagonal VCC, denoted by Vm,α with electronic state m and vibrational mode α , is given by the

spatial integration of the VCD:7

Vm,α =
∫

ηm,αd3r, where ηm,α := ∆ρmvα . (10)

Here vα is the potential derivative defined by

vα(r) =
(

∂u(r)
∂Qα

)
R0

, (11)

where u denotes the one-electron nuclear-electronic potential:

u(r) = ∑
A
− ZAe2

|r−RA|
. (12)

∆ρm is defined by the electron density difference: ∆ρm = ρm − ρ0, where ρm and ρ0 are the electronic

densities, for instance, for the excited state Sm and the ground state S0, respectively. Within the crude

adiabatic (CA) approximation,5 the reorganisation energy in the Franck–Condon (FC) Sm state is written as

∆Em = ∑
α

V 2
m,α

2ω2
α
, (13)

where ωα denotes the frequency for mode α . The adiabatic transition energy Em,0−0 can be written as

Em,0−0 = Em −∆Em, where Em is the vertical transition energy. Small ∆Em is desirable for small energy

dissipation, because small ∆Em means a small Stokes shift or vibrational relaxation.

In contrast, the off-diagonal VCC between the Sm and Sl states for mode α , Vml,α , is given by the

off-diagonal VCD:8

Vml,α =
∫

ηml,αd3r, where ηml,α := ρmlvα . (14)

Here ρml denotes the overlap density between the Sm and Sl states. For the N-electron wave functions of

states m and l, ΨSl and ΨSm ,

ρml(r) :=
1
N

∫
· · ·

∫
Ψ∗

Sl
(rω1,r2ω2, . . . ,rNωN)ΨSm(rω1,r2ω2, . . . ,rNωN)dω1d3r2dω2 · · ·d3rNdωN , (15)
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where r, ri(i = 2, . . . ,N) are space coordinates of electrons, and ωi(i = 1, . . . ,N) are spin coordinates of

electrons.

The VCD analyses enable us to discuss vibronic couplings in terms of electronic structure, ∆ρm or ρml ,

and vibrational structure, vα . The diagonal and off-diagonal vibronic couplings are characterised by the

spatial distributions of ∆ρm and ρml , respectively. When the overlap between ∆ρm or ρml and vα is small,

the VCC becomes small. In addition, the symmetrical localisation of ∆ρm or ρml around an atom gives rise

to the cancellation of the vibronic coupling density.7,9 Following these guiding principles, we can reduce

the VCCs under the control of ∆ρm and ρml .
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S3 Theory of Transition Dipole Moment Density

The oscillator strength is proportional to the square of the TDM. Since the spatial integration of transition

dipole moment density (TDMD) τττml
8 yields the TDM µµµml ,

µµµml =
∫

τττmld3r, where τττml :=−erρml, (16)

with r denoting the position vector. The TDMD provides an insight into enhancing the TDM. As is the case

for the off-diagonal VCD, the overlap density ρml also plays an important role in the TDMD analysis. In

our previous study, it was found that widely distributed ρml leads to large µµµml .
8,10,11
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S4 Fundamental Structure of Anthracene Derivatives

Focusing on the S1 → S0 transition, we compared the electron-density differences ∆ρ1 and overlap densities

ρ10 among 1a, 1b, and 1c. Their ∆ρ1 and ρ10 values are shown in Fig. S1. It is found that ∆ρ1 and ρ10 are

distributed similarly among the three molecules and they do not extend to the alkyl groups.

To evaluate the effect of the alkyl substitution on ∆ρm and ρml , the spatial integration of their absolute

values were calculated. Here we call the unsubstituted unit of 1b and 1c, the unit of anthracene derivative

1a, a fundamental structure, which has higher symmetry than the original structures. The fundamental

structure is defined by the subunit of a molecule where both the electron density difference ∆ρm and the

overlap density ρml are mostly localised. If the fundamental structure has a higher symmetry, we can

discuss the approximate selection rule based on the electronic structure of the fundamental structure. The

integrations of |∆ρm| and |ρml| over all space are defined as ID and IO, respectively. The region R is defined

as the space constructed by the Wigner–Seitz cells12 in the fundamental structure. The integrations of |∆ρm|

and |ρml| over the region R is defined as IR
D and IR

O, respectively. The definitions are summarised as follows:

ID :=
∫

|∆ρm(r)|d3r, IR
D :=

∫
R
|∆ρm(r)|d3r,

IO :=
∫

|ρml(r)|d3r, IR
O :=

∫
R
|ρml(r)|d3r. (17)

The ratios IR
D/ID and IR

O/IO between the S0 and S1 states are tabulated in Table S8. This table shows that

IR
D/ID and IR

O/IO are over 98%. The small changes in ∆ρ1 and ρ10 caused by the alkylations lead to almost

the same values of the VCCs and TDMs.

Table S8: Rates of IR
D/ID and IR

O/IO, where IR
D, ID, IR

O, and IO are defined by Eq. 17.

1a 1b 1c

IR
D/ID 99.49% 99.34% 99.12%

IR
O/IO 99.98% 99.10% 98.51%
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(a1) (a2) (a3)

(b1) (b2) (b3)

Fig. S1: Electron density differences ∆ρ1 and overlap densities ρ10: (a1–a3) ∆ρ1 for 1a, 1b, and 1c, respectively;

(b1–b3) ρ10 for 1a, 1b, and 1c, respectively. The isovalues for ∆ρ1 and ρ10 are both 0.001 a.u.
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S5 Vibronic Coupling and Transition Dipole Moment Analyses for Pyrene and Its

Derivative

S5.1 Diagonal vibronic coupling constants and densities in the Franck–Condon S1 state

(a) (b)
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Fig. S2: Vibronic coupling constants in the Franck–Condon S1 state: (a) pyrene 2 and (b) its derivative 2a. The

maximum-coupling modes are indicated by the arrows.

Molecule 2a was designed to have a delocalised electron-density difference, ∆ρ1, in the pyrene unit.

The diagonal vibronic coupling constants (VCCs) in the FC S1 state, V1,α , were calculated from the force

in the FC S1 state with respect to the normal mode in the S0 state. The VCCs of 2 and 2a are shown in Figs.

S2. The maximum-coupling mode for 2a, shown in Fig. S4a, is smaller than that for pyrene 2, shown in

Fig. S3a. Since the VCC of the maximum-coupling mode is reduced, the reorganisation energy ∆E1 for 2a

is smaller than that for 2; the values for 2 and 2a are 0.141 eV and 0.117 eV, respectively.

The reason for the reduction in the VCC for the maximum-coupling mode can be explained by the

diagonal vibronic coupling density (VCD) analysis. The potential derivatives vα for the maximum-coupling

modes of 2 and 2a are shown in Figs. S3b and S4b, respectively. The maximum-coupling mode for 2a is

the C–C stretching modes of the pyrene unit; the normal modes are localized on C4–C5 and C9–C10 bonds.

For this reason, the potential derivative vα for 2a is localised to the pyrene unit as is the same in 2.

The electron-density differences between the FC S1 state and the S0 state, ∆ρ1, of pyrene and 2a are

shown in Figs. S3c and S4c, respectively. The enlarged view of ∆ρ1 is shown in Fig. S5. It is found that

∆ρ1 for 2a is withdrawn from pyrene unit by the 1-pyrrolylethynyl groups. In particular, ∆ρ1 in the C8–C13
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and C9–C10 bond regions, which are also indicated by the red arrows in the Fig. S5, is reduced. Because

the maximum-coupling mode α is localised to the pyrene unit, the overlap between ∆ρ1 and vα for 2a is

smaller than that of pyrene.

The diagonal vibronic coupling densities η1,α = vα ×∆ρ1 for pyrene and 2a are shown in Figs. S3d and

S4d, respectively. Because of the small ∆ρ1 in the pyrene unit, η1,α for 2a is reduced. Therefore, the VCC

for the maximum-coupling mode for 2a is smaller than that for pyrene. Thus, it is shown that introducing

the 1-pyrrolylethynyl groups to pyrene gives rise to delocalised ∆ρ1 and to the small VCCs.

(a)

1

2

3

45

6

7

8

9 10

11

12

13

14

(b)

(c) (d)

Fig. S3: Diagonal vibronic coupling density analysis for pyrene 2: (a) maximum-coupling mode ω62 = 1684.69 cm−1

with carbon atom labels; (b) derivative of the electronic-nuclear potential v62; (c) electron-density difference between

the S1 and S0 states ∆ρ1; (d) diagonal vibronic-coupling density η1,62; and The isovalues for v62, ∆ρ1, and η1,62 are

0.01, 0.002, and 1×10−5, in atomic units, respectively.
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(a) (b)

(c) (d)

Fig. S4: Diagonal vibronic coupling density analysis for pyrene derivative 2a: (a) maximum-coupling mode ω166 =

1660.31 cm−1; (b) derivative of the electronic-nuclear potential v166; (c) electron-density difference between the S1

and S0 states ∆ρ1; and (d) diagonal vibronic-coupling density η1,166. The isovalues for v166, ∆ρ1, and η1,166 are 0.01,

0.002, and 1×10−5, in atomic units, respectively.

Fig. S5: Enlarged view of electron-density differences between the S1 and S0 states ∆ρ1 for (a) pyrene 2 and (b) its

derivative 2a. The isovalues for ∆ρ1 are 0.001, in atomic units.
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S5.2 0ff-diagonal vibronic coupling constants and densities between the S1 and S0 states

(a) (b)
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Fig. S6: Off-diagonal vibronic coupling constants between the S1 and S0 states: (a) pyrene 2 and (b) its derivative 2a.

In order to calculate the off-diagonal vibronic couplings in the internal conversion S1 → S0, we obtained

the adiabatic state by carrying out the geometrical optimisation in the S1 state. The off-diagonal VCCs were

calculated using the normal modes in the S0 state at the optimised structure for the S1 state.

In the adiabatic S1 state, the off-diagonal VCCs between the S1 and S0 states, V10,α , of 2 and 2a are

shown in Figs. S6. The VCC for the maximum-coupling mode of 2a is smaller than that of pyrene. The

suppressed off-diagonal VCCs come from a delocalised overlap density ρ10 for 2a.

It should be noted that the number of active modes in 2a is smaller than that in a molecule with the

same size that has a lower symmetry than D2h. Because the irreducible representation (irrep) of the S1 state

is B1u, only b1u modes are active in the off-diagonal vibronic couplings between the S0 and S1 states. For

pyrene 2, 12 b1u modes of all 72 modes are active:

Γvib(D2h) = 13ag +4b1g +7b2g +12b2g +5au +12b1u +12b2u +7b3u, (18)

for pyrene derivative 2a, 32 b1u modes of all 192 modes are active:

Γvib(D2h) = 33ag +14b1g +17b2g +32b2g +15au +32b1u +32b2u +17b3u. (19)

From the symmetry viewpoint, internal conversion is suppressed with the small number of radiationless

channels.
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The off-diagonal VCCs are analysed by the off-diagonal VCDs. The maximum-coupling modes for

pyrene 2 and its derivative 2a are depicted in Figs. S7a and S8a, respectively. The maximum-coupling

modes of 2a are localised to the pyrene unit. The potential derivatives vα for 2 and 2a are shown in Figs.

S7b and S8b, respectively. Both of the vα on the C2 and C7 atoms are large because of the localisation of

the normal modes.

The overlap densities between between the S1 and S0 states, ρ10, of 2 and 2a are shown in Figs. S7c

and S8c, respectively. One can see that 2a has smaller ρ10 than 2 does. The small ρ10 in the pyrene unit

originates from the extended π conjugation to the 1-pyrrolylethynyl groups. That is, the orbital overlap

density between the HOMO and LUMO, which is the main component of ρ01, is delocalised with small

density in the pyrene unit. Because of the small ρ10, η10,α for 2a is decreased in the pyrene unit, as shown

in Figs. S7d and S8d for 2 and 2a, respectively.

The VCCs V10,α are also decomposed into the atomic vibronic coupling constants (AVCCs), VA,10,α
9:

V10,α = ∑
A

VA,10,α , (20)

where A indicates the atoms. The AVCCs of the maximum-coupling modes of 2 and 2a are shown in Fig

S9. It is found that the AVCCs of the 1-pyrrolylethynyl group is small and the main contribution comes

from pyrene group. The absolute value of AVCC for the C2 atom of 2a decreases largely. This is because

the large ρ10 on the C2 atom of pyrene is reduced by introducing the 1-pyrrolylethynyl groups. Thus, an

extension of π conjugation can be one way to reduce the off-diagonal VCCs.
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Fig. S7: Off-diagonal vibronic coupling density analysis for pyrene 2: (a) maximum-coupling mode ω19 = 694.61

cm−1 with carbon atom labels; (b) derivative of the electronic-nuclear potential v19; (c) overlap density between the

S1 and S0 states ρ10; and (d) diagonal vibronic-coupling density η10,19. The isovalues for v19, ρ10, and η10,19 are 0.01,

0.002, and 1×10−5, in atomic units, respectively.
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Fig. S8: Off-diagonal vibronic coupling density analysis for pyrene derivative 2a: (a) maximum-coupling mode

ω70 = 687.59 cm−1 with carbon atom labels of the pyrene unit; (b) derivative of the electronic-nuclear potential v70;

(c) overlap density between the S1 and S0 states ρ10; and (d) diagonal vibronic-coupling density η10,70. The isovalues

for v70, ρ10, and η10,70 are 0.01, 0.002, and 1×10−5, in atomic units, respectively.

Fig. S9: Off-diagonal atomic vibronic coupling constants between the S1 and S0 states, in 10−5 atomic units: (a)

pyrene 2, V10,19, and (b) its derivative 2a, V10,70.
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S5.3 Transition dipole moment densities between the S1 and S0 states

The delocalised distribution of overlap density ρ10 gives rise to a large transition dipole moment (TDM).

The product of overlap density ρ10 and position vector r yields the transition dipole moment density

(TDMD) τ10. Because of the selection rule, x- and y-component of TDMs are zero, and the z-component of

TDMDs can be non-zero.

The z-component of TDMD, τz,10, for pyrene 2 and its derivative 2a are shown in Figs S10. It is found

that the overlap density is polarised in the z-direction. For pyrene 2, τz,10 on the C1, C3, C6, and C8 atoms

are large, in accordance with the large ρ10 on these atoms.

On the other hand, large τz,10 appears on the 1-pyrrolylethynyl groups in 2a. This is because the intro-

duced groups are so distant from the pyrene that the overlap of z-value and ρ10. As the result of the spatial

integration of τz,10, 2a has much larger TDM µz,10 than pyrene; The values of 2a and 2 are 4.4465 and

1.9393, in atomic units, respectively. Thus, the delocalised distribution of ρ10 increases the TDMs and then

enhances fluorescence process.

(a) (b)

Fig. S10: Transition dipole moment densities in the z-direction between the S1 and S0 states τz,10: (a) pyrene 2 and

(b) its derivative 2a The isovalue for τz,10 is 0.01, in atomic unit.
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