Supplementary Information

Transistor application of new picene-type molecules, 2,9-DIALKYLATED PHENANTHRO[1,2-*B*:8,7-*B*']DITHIOPHENES

Yoshihiro Kubozono^{*a,b,c}, Keita Hyodo^d, Hiroki Mori^d, Shino Hamao^a, Hidenori Goto^a and Yasushi Nishihara^{*b,c,d}

Research Laboratory for Surface Science, Okayama University, Okayama 700-8530, Japan

^{*b*} Research Center of New Functional Materials for Energy Production, Storage and Transport, Okayama University, Okayama 700-8530, Japan

^c Japan Science and Technology Agency, ACT-C, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan

^{*d*} Division of Earth, Life, and Molecular Sciences, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan

Table of contents

- 1) Device structure of C_n -PDT thin film FET
- 2) FET characteristics of C_{12} -PDT FETs with SiO₂ gate dielectric; the evaluated FET parameters are listed in Table S1.
- 3) FET characteristics of C_{12} -PDT FETs with high-*k* gate dielectrics; the evaluated FET parameters are listed in Table S2.
- 4) FET characteristics of solution-processed C_{12} -PDT FET

Fig. S1. Device structure of C_{12} -PDT thin-film FET with high-k gate dielectric; instead of high-k gate dielectric, the thermally oxidized SiO₂ is used for C_{12} -PDT thin-film FET with SiO₂ gate dielectric.

Device No.	$< \mu >$ (cm ² V ⁻¹ s ⁻¹)	$< V_{ m th} >$ (V)	$< I_{on/off} >$	<\$> (V decade ⁻¹)
1	1.41	$4.7 imes 10^1$	1.0×10^{7}	2.4
2	8.84×10^{-1}	$3.8 imes 10^1$	$9.3 imes 10^5$	4.4
3	6.38×10^{-1}	$3.1 imes 10^1$	$1.6 imes 10^6$	2.9
4	8.55×10^{-1}	$6.9 imes 10^1$	$1.9 imes 10^7$	1.3
5	1.75	$6.8 imes 10^1$	$5.0 imes 10^5$	12
6	1.61	$6.4 imes 10^1$	3.7×10^{5}	12
7	5.78×10^{-1}	5.5×10^{1}	$4.0 imes 10^5$	4.6
8	7.16 × 10 ⁻¹	7.2×10^{1}	1.5×10^{5}	7.2
9	1.53	5.7 ×10 ¹	6.9×10^{5}	9.6
Av.	1.1(5)	$6(1) \times 10^{1}$	$4(7) \times 10^{6}$	6(4)

	$<\mu>$ (cm ² V ⁻¹ s ⁻¹)	$< V_{ m th} >$ (V)	$< I_{\rm on/off} >$	<s> (V decade⁻¹)</s>
ZT				
1	$6.40 imes 10^{-1}$	8.7	1.7×10^{5}	8.3×10^{-1}
2	7.31×10^{-1}	8.7	$9.6 imes 10^2$	2.7
3	5.83×10^{-1}	6.9	1.7×10^5	1.0
Av.	$6.5(7) \times 10^{-1}$	8(1)	$1(1) \times 10^{5}$	2(1)
IfO ₂				
1	1.08	1.088×10^{1}	$1.8 imes 10^6$	9.720 × 10 ⁻¹
2	1.40	1.182×10^{1}	$1.2 imes 10^6$	1.154
3	2.19	1.165×10^{1}	$1.6 imes 10^5$	1.002
4	2.15	1.218×10^{1}	2.6×10^{5}	1.058
Av.	1.7(6)	1.16(6) ×10 ¹	$8(8) \times 10^{5}$	1.05(8)
a_2O_5				
1	9.1×10^{-1}	1.123×10^{1}	$8.4 imes 10^6$	1.32
2	5.8×10^{-1}	1.134×10^{1}	$7.7 imes 10^4$	1.54
3	7.3×10^{-1}	1.101×10^{1}	4.4×10^4	1.59
4	4.2×10^{-1}	1.257×10^{1}	$9.4 imes 10^3$	1.19
Av.	$7(2) \times 10^{-1}$	1.15(7) ×10 ¹	$2(4) \times 10^{6}$	1.4(2)
ZrO ₂				
1	2.06	1.179×10^{1}	2.9×10^5	1.25
2	9.69×10^{-1}	1.222×10^{1}	$3.5 imes 10^5$	1.61
3	2.12	1.185×10^{1}	$6.3 imes 10^4$	1.51
4	2.13	1.175×10^{1}	1.5×10^5	1.26
Av.	1.8(6)	1.19(2) ×10 ¹	$2(1) \times 10^{5}$	1.4(2)

Fig. S2. (a) Device structure and (b) photograph of solution-processed C_{12} -PDT thin-film FET. (c) Transfer and (d) output curves of the FET.