Supplementary materials

Effects of Side Groups on Kinetics of Charge Carrier Recombination in Dye Molecule-

Doped Multilayer Organic Light-Emitting Diodes

Shengwei Shi,*ab Feng Gao, b Zhengyi Sun, b Yiqiang Zhan, c Mats Fahlman, b Dongge Maa

^aState Key Laboratory of Polymer Chemistry and Physics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, P. R. China E-mail: shesh@ifm.liu.se

^bDepartment of Physics, Chemistry and Biology, Linköping University, S-58183 Linköping, Sweden

^cState Key Laboratory of ASIC and System, Department of Microelectronics, SIST, Fudan University, 200433, Shanghai, China

Experimental results for dye molecule-doped multilayer OLEDs with other molecular

systems (2 and 3) are listed as below by use of steady state and transient EL characterization

to support the conclusion and discussion in the main text.

Sample	R_1	R ₂	Melt point (°C)
2a	n-Bu	Н	146.0-147.0
2b	n-Bu	CH_3	170.0-171.0
2c	n-Bu	F	145.5-146.5
2d	n-Hexyl	CF_3	166.0-167.0
3a	t-Bu	p-COOCH ₃	222.5-224
3b	t-Bu	p-C ₆ H ₆	264-265
3c	Н	2,5-OCH ₃	140.5-141.5

Table s2. List of device performance and related parameters

Sample	Slope (S) (10 ⁶ µs)	Intercept (A)	$\gamma (10^{-12} \text{cm}^3 \text{s}^{-1})$	EL efficiency (cd/A)
2a	2.22	1.66	7.80 ± 0.05	2.6
2b	2.08	2.09	4.53 ± 0.05	1.9
2c	1.97	2.16	3.63 ± 0.05	1.2
2d	2.67	3.04	3.36 ± 0.05	1.0
3a	2.76	2.40	6.34 ± 0.05	1.4
3b	2.04	2.43	3.39 ± 0.05	1.2
3c	3.42	4.71	2.54 ± 0.05	0.8

* The unit is $10^{6} (cm^{3}/s)^{1/2}$ for S, and $(cm^{3}s)^{1/2}$ for A.

Figure s1. Device performance for multilayer OLEDs with molecule 2 doping. (a) EL spectra, (b) Current efficiency-current density, (a) Current density-voltage and (b) Luminance-current density

Figure s2. Transient EL characterization for multilayer OLEDs with molecule 2 doping. (a) Transient EL intensity-time and (b) comparison of the transient EL decay in dye molecule-doped OLEDs at the same equilibrium current density of 220 mA/cm² plotted in $(\varphi_{EL})^{-1/2}$ versus time scale. The $\varphi_{EL}(t)$ decay curves are shown in the inserted. Here t=0 corresponds to the voltage fall of the pulse.

Figure s3. Device performance for multilayer OLEDs with molecule 3 doping. (a) EL spectra, (b) Current efficiency-current density, (a) Current density-voltage and (b) Luminance-current density

Figure s4. Transient EL characterization for multilayer OLEDs with molecule 3 doping. (a) Transient EL intensity-time and (b) comparison of the transient EL decay in dye molecule-doped OLEDs at the same equilibrium current density of 200 mA/cm² plotted in $(\varphi_{EL})^{-1/2}$ versus time scale. The $\varphi_{EL}(t)$ decay curves are shown in the inserted. Here t=0 corresponds to the voltage fall of the pulse.