Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2015

submitted to J. Mater. Chem. C, 2014

Supporting Information for

Semiconductor Nanocrystals in Fluorous Liquids for the Construction of Light-Emitting Diodes

Myeongjin Park,^a Seok-Heon Jung,^b Jaehoon Lim,^c Dae-Young Kim,^b Heejin Kim,^b

Seungyong Lee,^b Heeyoung Jung,^a Seonghoon Lee,^d Changhee Lee,^{*a} and

Jin-Kyun Lee^{*b}

^{*a*} Department of Electrical and Computer Engineering, Inter-university Semiconductor Research Center, Seoul National University, Seoul 151-744, Republic of Korea,

^b Department of Polymer Science and Engineering, Inha University, Incheon 402-751, Republic of Korea,

^c Chemistry Division, Los Alamos National Laboratory, New Mexico 87544, United States

^d School of Chemistry, Seoul National University, Seoul 151-747, Republic of Korea.

chlee7@snu.ac.kr (C. Lee) jkl36@inha.ac.kr (J.-K. Lee)

Experimental

Raw materials and solvents

Heptadecafluoro-1-iodooctane, tridecafluoro-1-iodohexane, 5-hexen-1-ol (98%, TCI), 3-buten-1-ol (98%, TCI), azobisisobutyronitrile (AIBN), sodium bis(2-methoxyethoxy) aluminium dihydride (70% w/w solution in toluene, TCI), imidazole (99%, Alfa Aesar co.), iodine (99.8%, Yakuri), triphenylphosphine (98%, Deajung), thiourea (ACS reagent, >99%, Sigma-Aldrich), aliquat[®] 336 (Aldrich), diethyl ether (anhydrous), tetrahydrofuran (THF), distilled water, hexane, and toluene were used as received.

Equipment

The ¹H NMR spectra were recorded on a Varian Inova-400 (400 MHz) spectrometer at ambient temperature using the chemical shift of the residual protic solvent (CHCl₃ at δ 7.24 ppm and DMSO at δ 2.50 ppm) as an internal reference. All chemical shifts are quoted in parts per million (ppm)

submitted to J. Mater. Chem. C, 2014

relative to the internal reference and the coupling constants, *J*, are reported in Hz. The multiplicity of the signal is indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (doublet of doublets), dt (doublet of triplets), dm (doublet of multiplets), tt (triplet of triplets), and br s (broad singlet). The ¹³C NMR spectra were recorded on a Varian Inova-400 (101 MHz) spectrometer using the central resonance of the triplet of CDCl₃ at δ 77.0 ppm or the septet of DMSO-d6 at δ 40.0 ppm as a reference. GC-Mass spectrometry was performed on a Varian 1200L Single Quadrupole GC/MS System with 3800GC. A zeta potential analyzer (ELS-Z, Otsuka Electronics) was used to confirm the particle size distribution in a fluorinated solvent. The absorption spectra of the TCTA films with the solvent treatment were obtained using a Cary 5000 UV-Vis-NIR spectrophotometer (Agilent Technologies) with an integrating sphere system. The ultraviolet photoelectron spectroscopy (UPS) measurements were performed using Kratos AXIS-NOVA, employing He I light source and a hemispherical analyzer. The valence band maximum (VBM) of the nanocrystals was calculated using the following equation:

$$VBM = 21.2 \text{ eV} - |E_{\text{cutoff}} - E_{\text{onset}}|$$

[He I light photon energy = 21.2 eV; high binding energy cutoff (E_{cutoff}); onset point at valence band region (E_{onset})].

5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-Heptadecafluorododecane-1-thiol 4

A round bottomed flask was filled with semi-perfluoroalkyl iodide 6^1 (5.0 g, 8.3 mmol), thiourea (0.95 g, 12.5 mmol), Aliquat 336 (0.21 g, 0.53 mmol) and water (25 cm³). The mixture was heated

submitted to J. Mater. Chem. C, 2014

under reflux and stirred for 20 h. After the reaction, an aqueous KOH (50 cm³, 0.1 M) solution was added. After 0.5 h, the mixture was cooled to ambient temperature and concentrated HCl was added until the mixture became acidic. The mixture was extracted with CH₂Cl₂ (100 cm³) and then dried over anhydrous MgSO₄. The solution was concentrated under reduced pressure. The light brown oil was purified by flash column chromatography (silica gel, hexanes) to give thiol **4** as opaque crystals (2.6 g, 62%); $\delta_{\rm H}$ (400 MHz, CDCl₃) 2.55 (2H, td, *J* = 7.0 Hz, <u>CH₂SH</u>), 2.06 (2H, m, CF₂<u>CH₂</u>), 1.70 (4H, m, CF₂CH₂<u>CH₂CH₂</u>), 1.35 (1H, t, *J* = 7.5 Hz, CH₂<u>SH</u>). ¹³C NMR (101 MHz, CDCl₃, δ) 33.5, 30.42 (t, *J* = 22 Hz), 24.3, 19.3; m/z (GC-MS, EI) 508.0 [M+. C₁₂H₉F₁₇S requires M, 508.24].

1,1,1,2,2,3,3,4,4,5,5,6,6-tridecafluoro-12-iododecane 7

I₂ (7.93 31.2 mmol) was added to a magnetically stirred solution of g, 7,7,8,8,9,9,10,10,11,11,12,12,12-tridecafluorododecan-1-ol² (8.75)20.8 mmol), g, triphenylphosphine (8.19 g, 31.2 mmol) and imidazole (2.13 g, 31.2 mmol) in THF (200 cm³) in a dry ice/acetone bath under a N2 atmosphere. The reaction mixture was allowed to warm to ambient temperature. After stirring at that temperature for 2 h, the reaction was quenched by the addition of water (200 cm³) and Et₂O (200 cm³). The organic layer was then separated, washed with brine (200 cm³) and concentrated under reduced pressure. When a large amount of triphenylphosphine oxide precipitated, Et₂O (100 cm³) was added to the flask. The precipitated solid was filtered off through a short plug of silica gel and flushed with copious amounts of Et₂O. The filtrate was concentrated under reduced pressure and the resulting viscous liquid was crystallized from EtOH (90 cm³) to give the iodide 7 as colorless crystals (7.78 g, 71%); $\delta_{\rm H}$ (400 MHz, CDCl₃) 3.33 (2H, t, J = 7 Hz, CH₂I), 2.20 (2H, td, *J* = 9 Hz, CF₂CH₂), 1.98 (2H, td, *J* = 6.5 Hz, CF₂CH₂CH₂), 1.76 (2H, td, *J* = 7.5 Hz CH₂CH₂I), 1.62 - 1.52 (4H, m, CF₂CH₂CH₂CH₂CH₂CH₂).

7,7,8,8,9,9,10,10,11,11,12,12,12-Tridecafluorododecane-1-thiol 5

A round bottomed flask was filled with iodide **7** (5.0 g, 9.4 mmol), thiourea (1.08 g, 14.1 mmol), Aliquat 336 (0.25 g, 0.61 mmol), and water (25 cm³). The mixture was heated to 100 °C and stirred for 20 h. After 20 h, an aqueous KOH (50 cm³, 0.1 M) solution was added. After 0.5 h, the mixture was cooled to ambient temperature and concentrated HCl was added until the mixture became acidic. The mixture was extracted with CH₂Cl₂ (150 cm³) and dried over anhydrous MgSO₄. The solution was concentrated under reduced pressure. The light brown oil was purified by flash column chromatography (silica gel, hexanes) to give thiol **5** as opaque crystals (2.2 g, 42%); $\delta_{\rm H}$ (400 MHz, CDCl₃) 2.5 (2H, td, J = 7.5 Hz, <u>CH₂SH</u>), 2.15 – 1.87 (2H, m, CF₂CH₂), 1.6 (4H, qd, J = 8.0, 4.0 Hz, CF₂CH₂CH₂CH₂), 1.48 – 1.16 (5H, m, CF₂CH₂CH₂CH₂CH₂CH₂SH). The $\delta_{\rm H}$ data was in agreement with the literature values.³

7,7,8,8,9,9,10,10,11,11,12,12,13,13,14,14,14-Heptadecafluorotetradecanoic acid 2

2-(5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-Heptadecafluorododecyl)malonic acid **8**⁴ (0.50 g, 0.86 mmol) was dissolved completely in DMF and the solution was heated under reflux at 190 °C. After 1 h, the mixture was distilled to remove the DMF. CHCl₃ was then added to the flask and the unreacted starting material was filtered off. Subsequently, the filtrate was cooled to give the semi-perfluoroalkyl carboxylic acid **2** as brown crystals; $\delta_{\rm H}$ (400 MHz, CDCl₃) 2.37 (2H, t, *J* = 7.0 Hz, CH₂COOH), 2.05 (2H, m, CF₂CH₂), 1.68 (2H, m, CH₂CH₂COOH), 1.61 (2H, m, CF₂CH₂CH₂), 1.43 (2H, m, CF₂CH₂CH₂CH₂). The $\delta_{\rm H}$ data was in agreement with the literature values.⁴

5,5,6,6,7,7,8,8,9,9,10,10,10,11,11,12,12,12-Heptadecafluorododecan-1-amine 3

A 100 cm³ round bottomed flask was filled with the semi-perfluoroalkyl iodide **6** (3.5 g, 5.77 mmol) and sodium azide (0.41 g, 6.34 mmol). DMF (anhydrous, 15 cm³) was then added and the solution was stirred at 55 °C for 2 h. After the reaction was complete, the solution was poured into ice/water (100 cm³) and the solid was removed by filtration and washed with ice/water. The solid was dissolved in diethyl ether (100 cm³) and then dried over anhydrous MgSO₄. The solution was then concentrated under reduced pressure. The viscous liquid was chromatographed (silica gel, EA:hexanes = 1:5) to give azide **9** as a colourless viscous liquid. A Schlenk tube was then charged with Pd/C (10%, 0.2 g) and a solution of azide **9** (2.2 g) in an ethanol/TFT 1:1 mixture (20 cm³), purged with H₂(5 min), and fitted with a 3-layered balloon filled with H₂. The mixture was stirred at 35 °C for 3 h and filtered through a plastic syringe filter (0.45 µm, PFFE). The solvent was removed under reduced pressure and vacuum-dried to give the semi-perfluoroalkyl amine **3** as a white waxy solid (2.2 g, 77%) (400 MHz, CDCl₃) 2.63 (2H, t, *J* = 6.5 Hz, N<u>CH₂</u>), 2.04 (2H, m, CF₂<u>CH₂</u>CH₂), 1.63 (2H, m, CF₂<u>CH₂CH₂CH₂), 1.55 (2H, m, CF₂CH₂CH₂). The $\delta_{\rm H}$ data is in agreement with the literature values.⁵</u>

Preparation of R_F1-NC

In the first place, semi-perfluoroalkyl thiol **4** (1.02 g, 2.01 mmol) and ^{*i*}Pr₂EtN (0.52 g, 4.02 mmol) were dissolved in CHCl₃ (40 cm³) and stirred at room temperature for 0.5 h.⁶ To remove the residual oleic acid ligand, a solution of CdSe/CdZrdZnS core-shell type nanocrystals (**NC**) in toluene (1.5 cm³, 0.103 g cm⁻³) was diluted with 20 parts (by volume) of MeOH. The resulting precipitate was recovered by centrifuge and mixed with the aforementioned thiol **4** and ^{*i*}Pr₂EtN solution in CHCl₃. The reaction mixture was sonicated for 15 min at room temperature. The ligand-exchanged nanocrystals were precipitated by pouring excess hexanes, recovered by centrifuge and re-dispersed in CHCl₃. This dispersion-precipitation sequence was repeated two more times to obtain purified **R_F1-NC** (0.04 g). **R_F1-NC** (0.02 g) was then dissolved in HFE-7500 (1 cm³) and filtered through a

syringe filter (0.45 μ m, nylon) to prepare a **R**_F**1-NC** solution for solution casting.

Preparation and measurements of LEDs containing semiconductor nanocrystal

light-emitting layers

The MoO₃ and TCTA as a HTL were thermally evaporated sequentially on the patterned ITO substrates. A **R**_F**1-NC** (or **R**_F**2-NC**) solution in HFE-7500 (0.02 g per 1 cm³ of HFE-7500) or a **NC** solution in hexanes (0.02 g per 1 cm³ of hexanes) was spin-cast on the top of the TCTA / MoO₃ / ITO substrates at 2500 rpm for 40 s (for **R**_F**1-NC** and **R**_F**2-NC** solution) and 4000 rpm for 30 s (**NC** solution). The nanocrystal films were *ca*. 20 nm thick. TPBI as an ETL, LiF and an Al electrode were thermally evaporated sequentially on the former substrates under a pressure of 1×10^{-6} Torr. The current–voltage–luminance characteristics of the devices were measured using a source measurement unit (Keithley 236), a calibrated Si photodiode (Hamamatsu S5227-1010BQ), a photomultiplier tube detector and multimeter (Keithley 2000). The electroluminescence spectra of the devices were obtained using a spectroradiometer (Konica-Minolta CS-1000A).

Fig. S1 UV-Vis absorption spectra of the TCTA films with the solvent treatment.

Fig. S2 AFM topography images (image size: $5 \ \mu m \ x \ 5 \ \mu m$) of the TCTA films, (a) pristine sample, (b) after dipping in hexanes, (c) after dipping in HFE-7500. AFM topography images of the nanocrystal films, (d) **R_F1-NC** film on top of the TCTA layer, (e) **NC** film on top of TCTA layer.

Fig. S3 FT-IR experiments of thiol 4, NC and R_F1 -NC in their KBr pellet form.

Fig. S4 Particle size distribution of R_F1 -NC after the ligand exchange reaction (the particle sizes of NC before ligand exchange were 8 – 9 nm measured in hexanes). R_F1 -NC was dissolved and diluted in HFE-7500 to the point suitable for the measurement.

Fig. S5 UPS measurement data of NC, R_F1 -NC and R_F2 -NC, (a) valence band region, (b) high binding energy cut-off region, (c) valence band maximum (VBM) of the semiconductor nanocrystals

Fig. S6 Electrical characteristics of the LEDs fabricated with other hole-transporting layers in terms of (a) current density-voltage, (b) luminance-voltage characteristics, (c) external quantum efficiency-current density [**CBP**: 4,4'-bis(N-carbazolyl)-1,1'-biphenyl, **NPB**: N,N'-di-(1-naphthyl)-N,N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine].

submitted to J. Mater. Chem. C, 2014

Table S1. LED performances containing NC (Device B), **R**_F1-NC (Device A) and **R**_F2-NC (Device C).

Device	V _{on} (V)	Max. EQE (%)	EQE at 100 cd m ⁻² (%)	Max. LE (cd A ⁻¹)
A	3.6	3.19	0.78	2.27
В	4.5	0.18	0.18	0.13
с	2.7	4.24	3.45	4.40

References

- (1) Alvey, L. J.; Meier, R.; Soos, T.; Bernatis, P.; Gladysz, J. A. *Eur. J. Inorg. Chem.* **2000**, 1975-1983.
- (2) Woody, K. B.; Nambiar, R.; Brizius, G. L.; Collard, D. M. *Macromolecules* 2009, 42, 8102-8111.
- (3) Collins, G.; Kolesnik, M.; Krstic, V.; Holmes, J. D. Chem. Mater. 2010, 22, 5235-5243.
- (4) Anh, D. T.; Blancou, H.; Commeyras, A. J. Fluorine Chem. 1999, 96, 167-174.
- (5) Jung, B. J.; Lee, K.; Sun, J.; Andreou, A. G.; Katz, H. E. *Adv. Funct. Mater.* **2010**, *20*, 2930-2944.
- (6) Pong, B. K.; Trout, B. L.; Lee, J. Y. Langmuir 2008, 24, 5270-5276.