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Synthetic details. 

1. Potassium 9-carboxy-1,3-dioxo-1,3-dihydrobenzo-[5,10]-anthrax-[2,1,9-def]isochromene-8- 

carboxylate (1).   

 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) (1.96 g, 5 mM) was dissolved in a 

5% potassium hydroxide (22.4 g, 20 mM) solution at 90 °C under nitrogen. Then 14.0 g of 10% 

acetic acid was added dropwise into the flask over 30 min. The suspension was stirred for another 

1 h at the same temperature. The precipitated product 1 was filtered at room temperature, washed 

with water, and dried at 130 °C. Yield: 67%. The product was used for further reaction without 

purification. 
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Scheme S1 Synthetic route to precursor compound M1. 

2. 9-(2-Ethylhexyl)-1H-isochromeno[6',5',4':10,5,6]anthrax-[2,1,9-def]isoquinoline-1,3,8,10- 

(9H)-tetraone (M1): 

The synthetic route is shown in Scheme 1 and the experiment procedures are described as 

following. A mixture of compound 1 (1.25 g, 2.79 mM) and a 4.4 molar ratio of 

2-ethylhexylamine (1.59 g, 12.3 mM) and 12 mL of H2O-PrOH (v/v = 1:1 ) mixture as solvent 

was stirred at room temperature for 4 h and heated at 90 °C for another 2 h with stirring. The 

reaction mixture was then acidified with 10% hydrochloric acid, and the resulting precipitate was 

filtered and washed with water to remove residual amine. After which, the residue was stirred into 

hot 10% potassium hydroxide solution, and to the mixture was added 8% potassium chloride to 

separate the precipitated potassium salt of M1 and the symmetrically substituted diimide from the 

soluble, unreacted compound 1. The solid was then added into water and the insoluble, 

symmetrically substituted diimide was removed. The filtrate was acidified with 20% hydrochloric 

acid. The precipitate was filtered, washed with water, and dried to yield M1 in 10% yield. FT-IR 

(KBr): υ = 769, 1732, 1698, 1656, 1594, 1404, 1321, 1245, 1022, 810, 739 cm-1. 1H NMR (400 

MHz, d-DMSO, δ): 8.90-8.32 (m, 8H), 4.12-3.94 (m, 2H), 2.00-1.82 (m, 1H), 1.48-1.18 (m, 8H), 

0.99-0.74 (m, 6H). HRMS (MALDI-TOF, m/z): [M]+ calcd. for C32H25NO5: 503.1733, found: 

503.1737 (see Fig. S1, S2 and S7). 
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Scheme S2. Synthetic route to amino-functionalized tetraphenylethene M2. 
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3. 4-(1,2,2-Triphenylvinyl)aniline (TPE-NH2, M2): 

The synthetic route is shown in Scheme 2 and the experiment details are described below. Zinc 

dust (1.2 g, 18 mmol) was added into a 250 mL two-necked round-bottomed flask. The flask was 

degassed and flushed with dry nitrogen three times, after which THF (60 mL) was injected. The 

mixture was cooled to −5 to 0 °C by an ice-salt bath, then titanium tetrachloride (1 mL, 9 mmol) 

was added slowly. The mixture was allowed to warm to 25 °C and kept for 0.5 h and then refluxed 

at 74 °C for 2 h. The mixture was cooled to −5 to 0 °C again, treated with 0.5 mL of pyridine, and 

stirred for 10 min. Then a THF solution (10 mL) of benzophenone (0.58 g, 3.2 mmol) and 

4-aminobenzophenone (0.51 g, 2.6 mmol) was added slowly. After refluxing overnight, the 

reaction was quenched with a 10% potassium carbonate aqueous solution and extracted with DCM. 

The organic layer was washed with brine and dried over anhydrous magnesium sulfate. After 

filtration and solvent evaporation, the residue was purified by silica gel column chromatography, 

using petroleum ether/DCM (5:1 by volume) as eluent. The target compound (0.47 g) was 

obtained as a light yellow solid in 51.6% yield. 1H NMR (400 MHz, CDCl3, δ): 7.23-6.94 (m, 

15H), 6.90-6.75 (d, J = 9.6 Hz, 2H), 6.50-6.40 (d, J = 9.6 Hz, 2H), 4.00-3.50 (s, 2H). 13C NMR 

(100 MHz, CDCl3, δ): 144.48, 144.38, 144.32, 141.04, 139.80, 132.75, 131.70, 131.62, 131.59, 

127.95, 127.79, 127.78, 126.55, 126.39, 126.35, 115.24 (see Fig. S3). 
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Scheme S3. Synthetic route to mono-TPE modified PBI (TPE-N-PBI). 

4. 2-(2-Ethylhexyl)-9-(4-(1,2,2-triphenylvinyl)phenyl)anthrax-[2,1,9-def:6,5,10-d'e'f']diiso- 

quinoline-1,3,8,10(2H,9H)-tetraone (TPE-N-PBI): 

The typical synthetic procedures  are described as below and the synthetic route is shown in 

Scheme 3. M1 (0.5 g, 1 mmol), M2 (0.7 g, 2 mmol), zinc acetate (0.1 g) and imidazole (10 g) were 

added into a 100 mL two-necked round-bottomed flask. The flask was degassed and flushed with 

dry nitrogen three times. And then the mixture was heated to 180 °C and stirred for 24h and then 

cooled to room temperature. The mixture was poured into 100 mL of ice water and the precipitate 

was filtered and washed with water. After drying, the residue was purified by silica gel column 

chromatography, using petroleum ether/DCM (1:1 by volume) as eluent. The target compound 

(0.20 g) was obtained as a dark red solid in 24.1% yield. FTIR (KBr): υ = 1697, 1657, 1595, 1440, 

1403, 1354, 1256, 1179, 1125, 1075, 852, 810, 747, 700, 625, 584 cm-1. 1H NMR (400 MHz, 

CDCl3, δ): 8.69-8.31 (m, 8H), 7.25−7.03 (m, 19H), 4.20-4.04 (m, 2H), 1.99-1.83 (m, 1H), 

1.47-1.20 (m, 8H), 1.00-0.81 (m, 6H). 13C NMR (100 MHz, CDCl3, δ): 167.97, 163.62, 163.42, 

144.37, 143.90, 143.62, 143.58, 142.02, 140.37, 134.65, 134.18, 133.32, 132.69, 132.39, 131.74, 

131.63, 131.58, 131.24, 131.07, 129.70, 129.20, 129.01, 128.15, 128.06, 127.96, 127.89, 126.32, 
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126.16, 123.58, 123.39, 38.99, 38.21, 32.14, 30.60, 29.90, 29.55, 29.16, 23.99, 23.30, 23.20, 22.90, 

14.32, 14.25, 11.19, 10.85. HRMS (MALDI-TOF, m/z): [M]+ calcd. for C58H44N2O4: 832.3301, 

found: 832.3318 (see Fig. S4, S5 and S8). 
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Scheme S4. Synthetic route to dual-TPE modified PBI (DTPE-N-PBI). 

5. 2,9-Bis(4-(1,2,2-triphenylvinyl)phenyl)anthra[2,1,9-def:6,-5,10-d'e'f']diisoquinoline-1,3,8,10- 

(2H,9H)-tetraone (DTPE-N-PBI): 

PTCDA (0.5 g, 1 mmol), M2 (0.7 g, 2 mmol) and zinc acetate (0.1 g) was added into a 100 mL 

two-necked round-bottomed flask. The flask was degassed and flushed with dry nitrogen three 

times, after which quinoline (20 mL) was injected. The mixture was stirred at 215 °C for 36 h and 

then cooled to room temperature. The mixture was poured into 100 mL of ice water and the 

precipitate was filtered. The residue was stirred into 10% hydrochloric acid, and the resulting 

precipitate was filtered and washed with water. After that, the residue was added into hot 10% 

potassium hydroxide and was stirring at 90 °C for 0.5 h. The precipitate was filtered, washed with 

DCM, THF and methanol and dried to yield DTPE-N-PBI in 44.2% yield. FT-IR (KBr): υ = 1709, 

1670, 1594, 1506, 1404, 1346, 1253, 1174, 810, 748, 700 cm-1. HRMS (MALDI-TOF, m/z): [M]+ 

calcd. for C76H46N2O4: 1050.3458, found: 1050.3488 (see Fig. S6 and S9). 
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Fig.S1 1H NMR spectra of M1 in d-DMSO. The solvent peak is marked with asterisk. 
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Fig.S2 FT-IR spectra of (A) PTCDA and (B) M1. 
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Fig.S3 1H NMR and 13C NMR spectrum of TPE-NH2 in CDCl3. The solvent peak is marked with 
asterisk. 
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Fig.S4 1H NMR and 13C NMR spectrum of TPE-N-PBI in CDCl3. The solvent peaks are marked 
with asterisks. 
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Fig.S5 FT-IR spectra of (A) M1 and (B) TPE-N-PBI. 
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Fig.S6 FT-IR spectra of (A) PTCDA and (B) DTPE-N-PBI. 
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Fig.S7 MALDI-TOF mass spectra of M1. 
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Fig.S8 MALDI-TOF mass spectra of TPE-N-PBI. 
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Fig.S9 MALDI-TOF mass spectra of DTPE-N-PBI. 
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Fig. S10 The cyclic voltammograms of (A) M1 and (B) DTPE-N-PBI measured in DCM 
containing 0.1M [nBu4N]+[PF6]- at a scan rate of 50 mV/s. AgCl was used as reference electrode 
and ferrocene as a calibration. To obtain well-resolved CV signal, the concentration of TPE-N-PBI 
and M1 in DCM was 1.0×10-4 M, which was higher than that used in the optical spectrum 
measurements. 
 

 

Fig. S11 Typical X-ray diffraction patterns of DTPE-N-PBI aggregates at different areas. Only 
dispersive halos can be observed on the patterns. The images were recorded on a high resolution 
transmittance electron microscope (HRTEM) instrument.  
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Table S1 Data Summary of the Optical and Electromnic Properties of M1, TPE-N-PBI and 

DTPE-N-PBI 
 

 M1 TPE-N-PBI DTPE-N-PBI 
λabs,sol / nm 521 527 527 
 λem,sol / nm 535 539 539 
λem,agg / nm 524 529 523 
ΦF, sol / % 57.86 0.32 0.39 
ΦF, agg / % 36.91 0.55 1.48 
ΦF, film / % 0.9 0.5 0.5 

HOMOcal / eV -6.21  -5.34 -5.34 
LUMO cal / eV -3.67 -3.43 -3.41 
ΔE cal / eV 2.54 1.91 1.93 

HOMOmeas / eV -6.20 -6.40  
LUMO meas / eV -3.88 -4.12  
ΔE meas / eV 2.32 2.28  

 

 


