ELECTRONIC SUPPLEMENTARY INFORMATION

Eu³⁺@PMO: Synthesis, Characterization and

Luminescence Properties.

Dolores Esquivel,^a Anna M. Kaczmarek,^b César Jiménez-Sanchidrián,^c Rik Van Deun,^b Francisco J. Romero-Salguero^{c*} and Pascal Van Der Voort^{a*}

^a Center for Ordered Materials, Organometallics & Catalysis, Krijgslaan 281-S3, 9000 Ghent, Belgium.

^b L³- Luminescent Lanthanide Lab, Department of Inorganic and Physical Chemistry, Ghent University, Krijgslaan 281-S3, 9000 Ghent, Belgium

^c Departament of Organic Chemistry, Nanochemistry and Fine Chemistry Research Institute (IUIQFN), Faculty of Sciences, University of Córdoba, Campus de Rabanales, Marie Curie Building, Ctra. Nnal. IV, km 396, 14071 Córdoba, Spain.

Wavelength (nm)	CIE x	CIE y	CCT (K)
250.0	0.4217	0.4318	3481
260.0	0.4223	0.4319	3470
270.0	0.4254	0.4301	3402
280.0	0.4240	0.4281	3413
290.0	0.4262	0.4285	3376
300.0	0.4274	0.4328	3385
302.0	0.4002	0.4236	3385
310.0	0.4270	0.4393	3437
320.0	0.4266	0.4426	3466
330.0	0.4260	0.4429	3479
340.0	0.4245	0.4414	3495
350.0	0.4219	0.4399	3532
360.0	0.4203	0.4386	3552
370.0	0.4195	0.4382	3564
380.0	0.4191	0.4390	3577

Table S1. Change in CIE color coordinates and CCT values when exciting Dpdp-ePMO-EuCl₃ at different wavelengths.

Wavelength (nm)	CIE x	CIE y	CCT (K)
250.0	0.4234	0.4268	3414
260.0	0.4178	0.4280	3527
270.0	0.4211	0.4252	3446
280.0	0.4239	0.4218	3368
290.0	0.4478	0.4414	3195
298.0	0.4945	0.4871	2790
300.0	0.4591	0.4465	3256
310.0	0.4215	0.4346	3503
320.0	0.4167	0.4381	3614
330.0	0.4157	0.4376	3630
340.0	0.4129	0.4358	3671
350.0	0.4085	0.4334	3742
360.0	0.4049	0.4315	3802
370.0	0.4024	0.4316	3854
380.0	0.4014	0.4334	3885

Table S2. Change in CIE color coordinates and CCT values when exciting Dpdp-ePMO-Eu(tta)₃ at different wavelengths.

Scheme S1. Reaction mechanism for the hetero Diels-Alder cycloaddition between the double bonds on ethene-PMO (ePMO) and tetrazine derivative (top). Complete oxidation of dipyridyl-dihydropyridazine functionalized ethene-PMO with NaNO₂.

•

Figure S1. ¹³C CP/MAS NMR spectra of Dpdp-ePMO and Dpdp-ePMO oxid materials.

Figure S2. Top: emission spectrum of Dpdp-ePMO-EuCl₃ excited at 302.0 nm, plotted with a rainbow curve. Bottom: CIE color coordinate diagram of the sample when excited at this wavelength (point A marks the exact coordinates).

Figure S3. Luminescence decay profile of Dpdp-ePMO-EuCl₃ excited at 302.0 nm and monitored at 612.0 nm.

Figure S4. Luminescence decay profile of pure complex EuCl₃bptz excited at 302.0 nm and

monitored at 612.0 nm.

Figure S5. Top: emission spectrum of Dpdp-ePMO-Eu(tta)₃ excited at 298.0 nm, plotted with a rainbow curve. Bottom: CIE color coordinate diagram of the sample when excited at this wavelength (point B marks the exact coordinates).

Figure S6. Luminescence decay profile of Dpdp-ePMO-Eu(tta)₃ excited at 298.0 nm and

monitored at 612.0 nm.

Figure S7. Luminescence decay profile of pure complex Eu(tta)₃bptz excited at 298.0 nm and monitored at 612.0 nm.

Figure S8. Schematic illustration of the "antenna effect", wherein the incident excitation is first absorbed by a organic ligand and than transferred to the Ln(III) metal.

Figure S9. Excitation spectrum of Dpdp-ePMO material