Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2014

Liquid crystalline and charge transport properties of novel nonperipherally octasubstituted perfluoroalkylated phthalocyanines

Lydia Sosa-Vargas,^a Fabien Nekelson, ^a Daiju Okuda,^c Minokazu Takahashi, ^a Yukimasa Matsuda, ^a Quang-Duy Dao,^b Yoshida Hiroyuki, ^b Akihiko Fujii, ^b Masanori Ozaki, ^b & Yo Shimizu*^a

ELECTRONIC SUPPORTING INFORMATION

Table S1. XRD lattice parameters of compounds 2 (a) and 3 (b) at both Col_h and Col_r mesophases

Fig. S1. Normalised UV-Visible spectra for compounds 1,2 and 3 in THF (C=1x10⁻⁵M).

Fig. S2. DSC curves of 3 at 1°C / min of heating and cooling rates.

Fig. S3. Detailed POM analysis of mesophase textures of **2** upon cooling (1°C/min) from the isotropic phase in which we can observe the homeotropic alignment at the Col_h phase (a) followed by the Colr phase (b) with a *c2mm* symmetry which then rearranges into p2gg (c) until reaching its crystalline phase (d).

Fig. S4. XRD evidence for the symmetry rearrangement (*c2mm* to p2gg) occurring in the fluorinated phthalocyanine **2** as the columnar hexagonal phase collapses into Colr upon cooling (170 to 160°C).

Fig. S5. Nodal patterns of the a, s, -a and -s molecular orbitals (HOMO/LUMO) of the non-fluorinated phthalocyanine in B3LYP geometry optimisations with 6-31G(d) basis sets at an isosurface value of 0.03 au.

T = 190 °C	Col _h , a = 22.3 Å		
hk	d _{obs} / Å	d _{theoretical} / Å	
10	19.32	19.32	
11	11.16	11.15	
20	9.77	9.66	
	5.5br		
	4.5br		
Z	1.0	1	

T = 170 °C	Col, (c2mm), a = 41.7 Å	T = 160 °C	Col _r (<i>p2gg</i>), a = 4	1.7 Å, b = 22.4 Å
hk	d _{obs} / Å	hk	d _{obs} / Å	d _{theoretical} / Å
11	19.62	11	19.70	19.70
20	20.82	20	20.87	20.87
13	7.28	13	7.28	7.34
22	9.76	22	9.82	9.85
40	10.38	40	10.35	10.44
	5.4br	32	8.84	8.71
	4.4sh, br	52	6.84	6.69
Ζ	1.9		5.4br	
			4.4sh, br	
		Z	1.9	2
		L	1.5	2

b)

T = 155 °C	Col _h , a	= 21.7 Å	T = 140 °C	Col _r (c <i>2mm</i>), a =	38.5 Å, b = 21.3 Å
hk	d _{obs} / Å	d _{theoretical} / Å	hk	d _{obs} / Å	d _{theoretical} / Å
10	18.79	18.79	11	18.63	18.63
11	10.85	10.85	20	19.24	19.24
20 9.41	9.41	9.40	2	10.63	10.65
		22	9.31	9.31	
	4.5br		40	9.59	9.62
Z	1.1	1			
				4.4br	
			Z	2.0	2

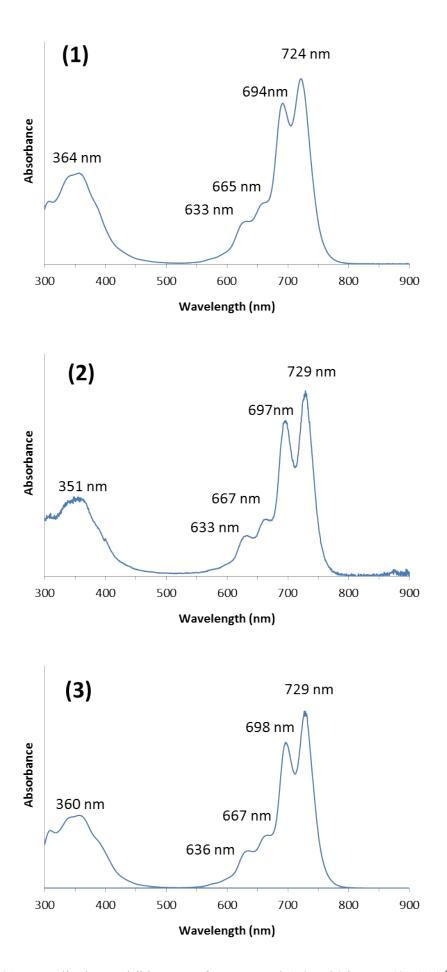


Fig S1. Normalised UV-Visible spectra for compounds 1,2 and 3 in THF (C=1x10⁻⁵M)

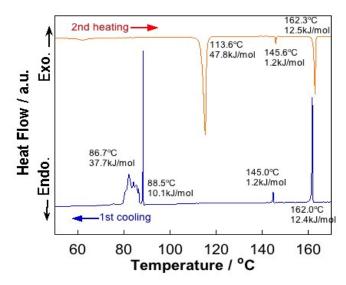
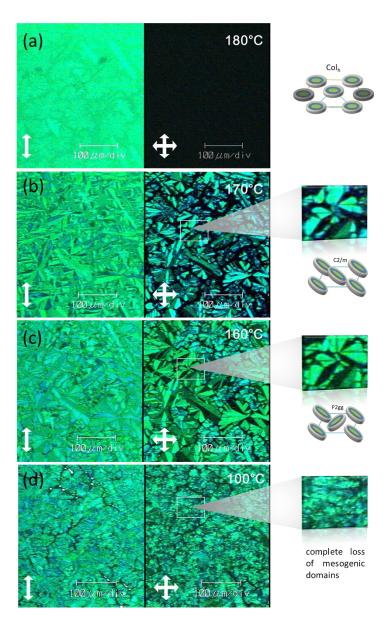



Fig. S2. DSC curves of 3 at 1°C / min of heating and cooling rates.

Fig S3. Detailed POM analyses of mesophase textures of **2** upon cooling (1°C/min) from the isotropic phase in which we can observe the homeotropic alignment at the Col_h phase (a) followed by the Col_r phase (b) with a *c2mm* symmetry. This Colr phase is then rearranges on cooling into *p2gg* (c) clarified by an XRD analysis until reaching its crystalline phase (d).

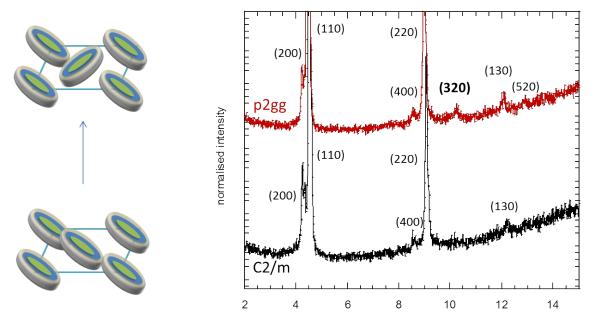
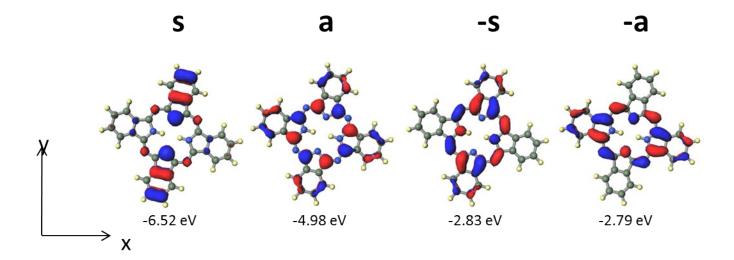



Fig. S4. The XRD evidence for the symmetry rearrangement (c2mm to p2gg) occurring in the fluorinated phthalocyanine 2 as the c2mm symmetry changes to p2gg one for the Col_r mesophase upon cooling (170 to 160°C).

Fig. S5. Nodal patterns of the a, s, -a and –s molecular orbitals (HOMO/LUMO) of the non-fluorinated phthalocyanine in B3LYP geometry optimisations with 6-31G(d) basis sets at an iso-surface value of 0.03 au (Q.-D. Dao, L. Sosa-Vargas, T. Higashi, M. Ohmori, H, Itani, A. Fujii, Y. Shimizu and M. Ozaki, submitted.).