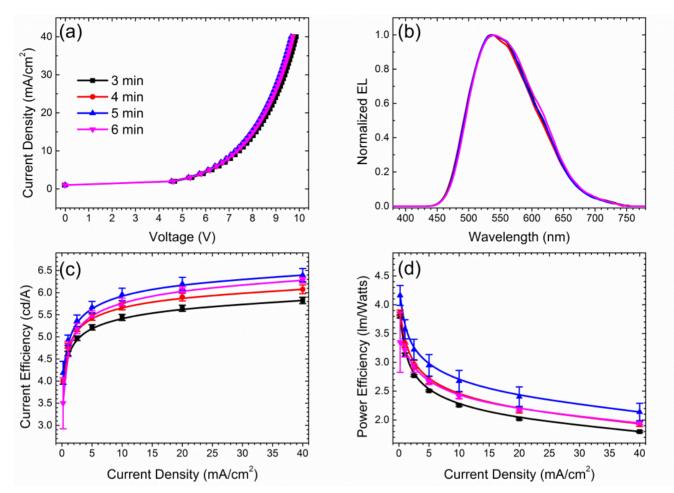
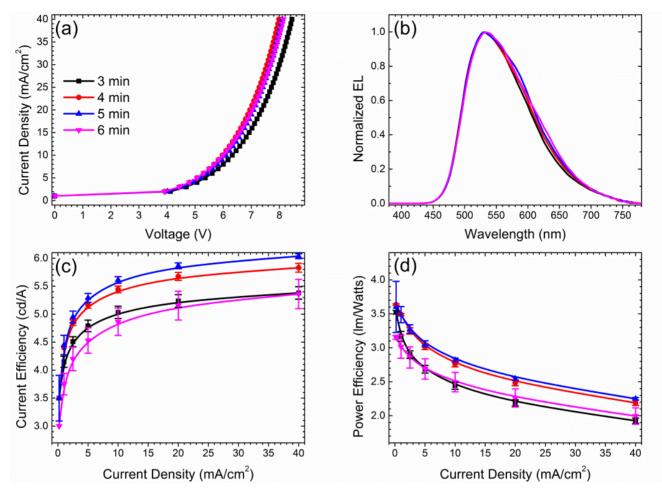

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2015

## **Supporting Information**

## **Origin of Light Manipulating in Nano-honeycomb Structured Organic Light-emitting Diodes**


Xiao-Bo Shi, Min Qian, Dong-Ying Zhou, Zhao-Kui Wang\*, and Liang-Sheng Liao\*

Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China




Email:zkwang@suda.edu.cn; lsliao@suda.edu.cn.

**Figure S1**. The average performance of OLED devices based on Alq<sub>3</sub> as emitters. The thickness of  $MoO_x$  layer is **30 nm** and the  $O_2$  plasma etching time varies from 3 to 6 min. (a) Current density-voltage curves; (b) EL spectra; (c) Current efficiency verse current density curves; (d) Power efficiency verse current density curves.



**Figure S2**. The average performance of OLED devices based on Alq<sub>3</sub> as emitters. The thickness of  $MoO_x$  layer is **50 nm** and the  $O_2$  plasma etching time varies from 3 to 6 min. (a) Current density-voltage curves; (b) EL spectra; (c) Current efficiency verse current density curves; (d) Power efficiency verse current density curves.



**Figure S3**. The average performance of OLED devices based on Alq<sub>3</sub> as emitters. The thickness of  $MoO_x$  layer is **70 nm** and the  $O_2$  plasma etching time varies from 3 to 6 min. (a) Current density-voltage curves; (b) EL spectra; (c) Current efficiency verse current density curves; (d) Power efficiency verse current density curves.

Figures S1-3 depict the average performance of honeycomb structure OLED devices based on Alq<sub>3</sub> as emitters. The thicknesses of  $MoO_x$  layer are 30, 50, and 70 nm, while the  $O_2$  plasma etching time varies from 3 to 6 min. An optimized performance is achieved when the thickness of  $MoO_x$  layer is 50 nm and the MCC pattern of polystyrene spheres is etched for about 5 min, which corresponds to the best diffraction.