Electronic Supplementary Information

A Unique White Electroluminescent One-Dimensional Europium(III) Coordination Polymer

Hui Xu, *^{a,c} Jianzhe Wang,^a Ying Wei,^{ac} Guohua Xie, *^b Qin Xue,^b Zhaopeng Deng,^a Wei Huang *^c

 ^aKey Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, 74 Xuefu Road, Harbin 150080, P. R. China
 ^bOrganic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, KY16 9SS, United Kingdom
 ^cInstitute of Advanced Materials (IAM), Nanjing University of Technology, Nanjing 211816, P.R.

China

Content

Table S1. Crystal data and structure refinement of Eu-FDPO	2
Table S2. Selected bond lengths (Å) and angles (degree) of Eu-FDPO	3
Table S3. Physical properties of Eu-FDPO	4
Particle Size Distribution of Eu-FDPO in DMSO Solution	5
DFT Calculation Results of Eu-FDPO	6
Electrical Properties of Eu-FDPO	7
Table S4. EL performance of representative Eu ³⁺ metallopolymers	8
References	9

 Table S1. Crystal data and structure refinement of Eu-FDPO.

Formula	C94 H69 Eu O8 P2		
Formula weight	1540.39		
T (K)	293(2)		
Crystal system	Monoclinic		
Space group	C 2/C		
a (Å)	52.7880(17)		
b (Å)	12.4054(3)		
c (Å)	25.0467(8)		
β (deg)	113.292(4)		
V (Å ³)	15065.3(8)		
Ζ	8		
ρ (g/cm ³)			
μ (mm ⁻¹)	1.358		
F(000)	6320		
crystal size (mm)	$0.30\times0.25\times0.21$		
θ (deg)	3.06 to 26.00		
	$-64 \le h \le 60$		
Index ranges	$-15 \le k \le 15$		
	$-28 \le l \le 30$		
Absorption correction	Multi-scan		
Max. and min. transmission	0.8279 and 0.7668		
GOF on F2	1.056		
R1, R2 $[I > 2\sigma(I)]$	0.0367, 0.0771		
R1, R2 (all data)	0.0620, 0.0853		
Largest diff. peak and hole (e.Å-3)	0.811 and -0.709		

Bond length (Å)			
Eu1-O3	2.341(2)	P1-O4	1.485(2)
Eu1-O8	2.3468(19)	P1-C72	1.791(3)
Eu1-O4	2.3627(18)	P1-C78	1.793(3)
Eu1-O7	2.364(2)	P1-C61	1.794(3)
Eu1-O1	2.3858(19)	P2-O2	1.4817(18)
Eu1-O2	2.4148(18)	P2-C75	1.793(3)
Eu1-O6	2.448(2)	P2-C76	1.797(3)
Eu1-O5	2.451(2)	P2-C85	1.803(3)
Bond angle (°)			
O3-Eu1-O8	104.52(8)	O3-Eu1-O5	81.22(8)
O3-Eu1-O4	146.32(7)	O8-Eu1-O5	68.63(7)
O8-Eu1-O4	88.51(8)	O4-Eu1-O5	74.81(7)
O3-Eu1-O7	94.85(8)	O7-Eu1-O5	144.68(7)
O8-Eu1-O7	144.72(8)	O1-Eu1-O5	71.14(7)
O4-Eu1-O7	91.39(7)	O2-Eu1-O5	125.87(7)
O3-Eu1-O1	71.63(7)	O6-Eu1-O5	131.46(7)
O8-Eu1-O1	139.66(7)	O4-P1-C72	114.07(14)
O4-Eu1-O1	78.35(7)	O4-P1-C78	110.10(13)
O7-Eu1-O1	74.32(7)	C72-P1-C78	106.75(14)
O3-Eu1-O2	71.72(7)	O4-P1-C61	110.99(13)
O8-Eu1-O2	74.04(7)	C72-P1-C61	105.95(14)
O4-Eu1-O2	141.90(7)	C78-P1-C61	108.73(14)
O7-Eu1-O2	84.79(7)	O2-P2-C75	112.30(12)
O1-Eu1-O2	135.65(7)	O2-P2-C76A	112.38(12)
O3-Eu1-O6	141.18(7)	C75-P2-C76A	110.08(13)
O8-Eu1-O6	76.34(7)	O2-P2-C85	108.73(13)
O4-Eu1-O6	71.69(7)	C75-P2-C85	105.57(13)
O7-Eu1-O6	70.21(7)	C76A-P2-C85	107.43(13)
O1-Eu1-O6	132.23(7)	C73-C83-C69	110.9(2)
O2-Eu1-O6	71.38(7)		

 Table S2. Selected bond lengths (Å) and angles (degree) of Eu-FDPO.

Table S3. Physical properties of Eu-FDPO.

Absorption (nm)	Emission (nm)	PLQY ^c (%)
227, 260, 287, 311, 347 ^a	580, 593, 613, 656, 706 ^a	24ª
246, 304, 364 ^b	579, 592, 612, 655, 702 ^b	85 ^b
S_{1}/T_{1} (eV)	HOMO/LUMO (eV)	$\mu_{\rm e}/\mu_{\rm h}^{\rm g} (10^{-7}{\rm cm}^2{ m V}^{-1}{ m s}^{-1})$
3.07 ^d /-	-5.5 ^f /-2.6 ^f	5.4/0.79
3.78°/2.42°	-4.851e/-1.068e	

^a In CH₂Cl₂ (10⁻⁵ mol L⁻¹); ^b in film; ^c calculated by using Ru(bpy)₃Cl₂ as standard; ^d estimated according to the absorption edges; ^e DFT calculated results of pendamer; ^f calculated according to the equation HOMO/LUMO = -4.78 - onset voltage of redox peaks; ^g estimated according trap-free space charge limited current model.

Particle Size Distribution of Eu-FDPO in DMSO Solution

Figure S1. Particle size distribution of dilute DMSO solutions of **Eu-FDPO** (10^{-1} g L⁻¹) measured by dynamic light scattering technology.

DFT Calculation Results of Eu-FDPO

Figure S2. Contours of FMOs and T_1 SDD of monomer and pentamer of **Eu-FDPO** by DFT simulation.

Electrical Properties of Eu-FDPO

Figure S3. a) Cyclic voltammogram of **Eu-FDPO**. The measurement was performed in THF and dichloromethane for reduction and oxidation, respectively, with tetrabutylammonium hexafluorophosphate as electrolyte and a silver/silver nitrate (Ag/Ag^+) reference electrode at room temperature in nitrogen at a scanning rate of 100 mV s⁻¹; b) *I-V* characteristics of nominal single-carrier transporting devices based on **Eu-FDPO** and the corresponding fitting curves by SCLC model.

Ref.	Polymer	Device	Voltage	L _{Max}	Maximum efficiencies ^b	Efficiency roll-offs (%) ^c		offs (%)°	CIE
	Туре		(V) ^a	(cd m ⁻²)		CE	PE	EQE	coordinate
[1]	Wolf-I	PEDOT:PSS/Eu ³⁺ polymer:PBD/Ba	12.5, 13.5, 15.5	149	0.41, 0.09, 0.43	26	33	26	0.67, 0.33
[2]	Wolf-I	PEDOT:PSS/PVK/Eu ³⁺ polymer:OXD-7/Ba	17, -, -	68	0.18, 0.03, 0.37	-	-	-	-, -
[3]	Wolf-I	Eu ³⁺ polymer/LiF/Ca:Ag	8, 15, 18	126	0.56, -, -	-	-	-	-
[4]	Wolf-I	PEDOT:PSS/Eu ³⁺ polymer/BCP/Alq ₃ /LiF/Al	17, -, -	42	<0.5, 0.035, -	-	-	-	0.66, 0.33
[5]	Wolf-I	PVK/Eu ³⁺ polymer/Ba	15, 25, -	11	-, -, 0.07	-	-	-	-, -
This work	Wolf-III	PEDOT:PSS/PVK:PBD: Eu- FDPO/Ca (I)	8.8, -, -	7	0.01, 0.003, 0.01	-	-	-	0.46, 0.33
This work	Wolf-III	PEDOT:PSS/PVK:PBD: Eu- FDPO/B3PYMPM/Ca (II)	7.6, 8.4, 10.2	215	0.71, 0.27, 0.37	38	52	38	0.38, 0.32
This work	Wolf-III	PEDOT:PSS/PVK:FDPO:Eu- FDPO/B3PYMPM/Ca (III)	12.5, 13.9, 15.9	240	0.22, 0.05, 0.14	18	20	21	0.28, 0.29

Table S4. EL performance of representative Eu³⁺ metallopolymers.

^a In the order of onset, 10 and 100 cd m⁻²; ^b in the order of CE (cd A⁻¹), PE (lm W⁻¹) and EQE (%); ^c at 100 cd m⁻².

References

[1] H. Xu, R. Zhu, P. Zhao and W. Huang, J. Phys. Chem. C 2011, 115, 15627-15638.

[2] C. Yang, J. Xu, Y. Zhang, Y. Li, J. Zheng, L. Liang and M. Lu, J. Mater. Chem. C 2013, 1, 4885-4901.

- [3] Q. D. Ling, Q. J. Cai, E. T. Kang, K. G. Neoh, F. R. Zhu and W. Huang, J. Mater. Chem. 2004, 14, 2741-2748.
- [4] Z.-G. Zhang, J.-B. Yuan, H.-J. Tang, H. Tang, L.-N. Wang and K.-L. Zhang, J. Polym. Sci. A 2009, 47, 210-221.

[5] J. Pei, X.-L. Liu, W.-L. Yu, Y.-H. Lai, Y.-H. Niu and Y. Cao, *Macromolecules* 2002, 35, 7274-7280.