Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2014

Electronic supplementary information (ESI)

Hybrid nanomaterials YVO₄:Eu/Fe₃O₄ for optical imaging and hyperthermia in cancer cells

Laishram Priyobarta Singh,^a Neena V. Jadhav,^b Sachil Sharma,^c Badri N. Pandey,^b Sri Krishna Srivastava,^a Raghumani Singh Ningthoujam^{*,d}

^aDepartment of Chemistry, Manipur University, Imphal-795003, India

^bRadiation Biology and Health Sciences Division, Bhabha Atomic Research Center, Mumbai-400085, India ^c Department of Chemistry, Indian Institute of Technology, Kanpur-208016, India ^dChemistry Division, Bhabha Atomic Research Center, Mumbai-400085, India

*Corresponding Author: rsn@barc.gov.in

Fig. S1 (a) XRD patterns of YVO₄:Eu (2 at.%) nanoparticles prepared at different annealing temperatures (as-prepared, 500 and 900 °C), and (b) their expansion in $2\theta = 23-27^{\circ}$.

Fig. S2 (a) XRD patterns of 900 °C annealed samples of YVO_4 :Eu at different doping concentrations of Eu^{3+} (2, 5, 7 and 10 at. %) and (b) their unit cell volume.

Fig. S3 XRD patterns of YVO₄:Eu nanoparticles for (a) as-prepared and (b) 500 $^{\circ}$ C at different doping concentrations of Eu³⁺ (2, 5, 7 and 10 at. %).

Fig. S4 TGA-DTA curves of 10 at.% Eu^{3+} ion doped YVO₄ nanoparticles. Apparent rise in weight above 600 °C is due to artifact.

Fig. S5 FTIR spectra of 10 at.% Eu^{3+} doped YVO₄ at different annealing temperatues (a) as-prepared, (b) 500 and (c) 900 °C along with (d) as-prepared YVO₄:10Eu/Fe₃O₄hybrid.

Fig. S6 (a) Excitation spectra of as-prepared, 500 and 900 °C annealed samples of 2 at.% Eu^{3+} doped YVO₄ monitored at emission wavelength of 620 nm and (b) their expansion in 250-350 nm. (c) Deconvolution of as-prepared data in 250-350 nm using Gaussian fit. The peaks corresponding to Eu-O and V-O CTB are distinguished.

Fig. S7 (a) Normalized emission spectra of pure YVO_4 (as-prepared, 500 and 900 °C annealing samples) after excitation at 300 nm. (b) Decay curves of pure YVO_4 (as-prepared, 500 and 900 °C annealing samples) after excitation at 300 and 430 nm emission wavelength and inset shows the fitting to decay data of 900 °C annealed sample using monoexponential equation.

Fig. S8 (a) Emission spectra of 900 °C annealed samples of 2 at.% of Eu^{3+} doped YVO₄ after excitation at different wavelengths and (b) their corresponding expansions in 610-630 nm fixed at 5 nm, slit with.

Fig. S9 (a) Integrated area, (b) FWHM under ${}^{5}D_{0}-{}^{7}F_{2}$ transition and (c) corresponding asymmetric ratio of ${}^{5}D_{0} \rightarrow {}^{7}F_{2}/{}^{5}D_{0} \rightarrow {}^{7}F_{1}$ transitions as a function of Eu³⁺ ion concentration and at different annealing temperature excited at 395 nm excitation.

Fig. S10 Magnetization (M) vs. applied magnetic field (H) for pure Fe_3O_4 and YVO_4 :10Eu/ Fe_3O_4 hybrid.