Electronic Supplementary Information

Patterning of rubrene thin-film transistors based on electron irradiation of a polystyrene dielectric layer

Jae Joon Kim^{*a*}, Hyeok Moo Lee^{*b*}, Ji Won Park^{*a*}, and Sung Oh Cho^{*a*}

^a Jae Joon Kim, Ji Won Park and Sung Oh Cho: Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea)

^b Hyeok Moo Lee: Informative Electronic Materials Lab., LG Chemistry Research Park,
Daejeon 305-738 (Korea)

Figure S1. POM images of crystalline rubrene thin films fabricated by the abrupt heating process at different annealing conditions of (a) 125 °C for 60 min, (b) 150 °C for 10 min, (c) 170 °C for 1 min, and (d) 180 °C for 1 min. All rubrene films were fabricated on PS layers electron-irradiated at the fluence of 2×10^{17} cm⁻².

Figure S2. (a-c) POM images of fabricated rubrene thin-film patterns on PS layers with different thicknesses of (a) 10 nm, (b) 30 nm, (c) 50 nm, and (d) 150 nm.

Figure S3. Transfer characteristics of rubrene TFTs on irradiated PS layers with different thickness of (a) 20nm (red lines) and (b) 150 nm (blue lines). Solid lines are drain-source currents and dashed lines are gate leakage currents. The transfer curves were measured at a drain-source voltage of -15 V.

Figure S4. POM image of a patterned crystalline rubrene film fabricated on UV-irradiated PS. The thickness of PS is 20 nm.