Electronic Supplementary Information

Highly luminescent nitrogen-doped carbon quantum dots as effective

fluorescent probes for mercuric and iodide ions

Zi Li^{a,b,‡} Huijun Yu,^{b,c,‡} Tong Bian,^b Yufei Zhao,^b Chao Zhou,^b Lu Shang,^b Yanhui Liu,^a Li-Zhu Wu,^b Chen-Ho Tung^b and Tierui Zhang*^b

^aBeijing Key Laboratory of Bioprocess, College of Biology Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.

^bKey Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.

^cUniversity of Chinese Academy of Sciences, Beijing, 100049, P. R. China

*Corresponding author. E-mail: tierui@mail.ipc.ac.cn

[†]They make equal contributions to this study.

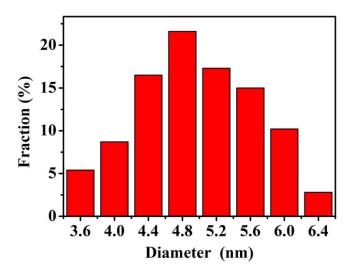
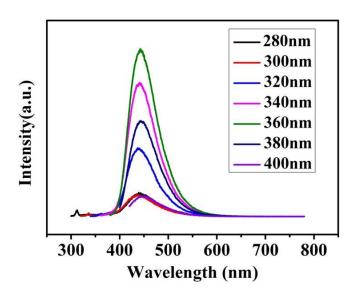
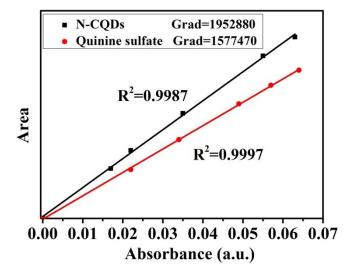
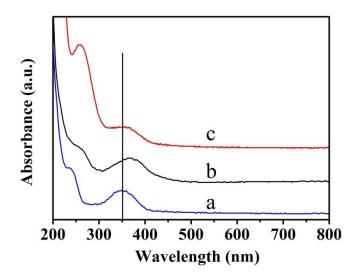



Fig. S1 The size distribution of N-CQDs.

Table S1. Elemental analysis of N-CQDs


	C (%)	H (%)	N (%)	O (%)	Composition
N-CQDs	47.8	8.0	19.0	25.2	$C_{4.0}H_{8.0}O_{1.6}N_{1.4}$


Fig. S2 Fluorescence spectra of N-CQDs. (The strongest emission was observed at 445 nm excited at 360 nm.)

QY measurements

The QY (Φ) of N-CQDs was determined with quinine sulfate (QY = 54% in 0.1 M H_2SO_4) as the reference.

Fig. S3 The relationship between the fluorescence intensity and the absorbance of Quinine sulfate (red) and N-CQDs (black). The QY of N-CQDs was calculated to be 66.8%.

Fig. S4 UV-Vis absorption spectra of N-CQDs (a), N-CQDs-Hg $^{2+}$ (b), and N-CQDs-Hg $^{2+}$ -I $^{-}$ (c).

Fluorescence lifetime measurements

Fluorescence lifetimes were measured by the time-correlated single-photon counting technique. Measurements were carried out at $\lambda_{ex} = 340$ nm and $\lambda_{em} = 445$ nm. The fluorescence decay curves of N-CQDs were fitted with double exponential functions.

Table S2 Fluorescence lifetimes of N-CQDs, N-CQDs in the presence of Hg^{2+} , and N-CQDs- Hg^{2+} in the presence of I^- .

	1			2			$ au_{avg}$
system	τ_1	$\mathbf{A_1}$	Percentage	$ au_2$	$\mathbf{A_2}$	Percentage	(ns)
	(ns)		(%)	(ns)		(%)	
N-CQDs	2.91	0.02858	4.08	15.30	0.1280	95.92	14.79
N-CQDs-Hg ²⁺	3.03	0.07432	18.69	10.10	0.0972	81.31	8.77
N-CQDs-Hg ²⁺ -I ⁻	1.17	0.04800	2.87	14.80	0.1278	97.13	14.43

 τ_1 and τ_2 refer to the short and long lifetime of N-CQDs, respectively.