S1

Supporting Information

Fluorene Copolymers with High Efficiency Deep-Blue Electroluminescence

José Santos,^a Javan H. Cook,^b Hameed A. Al-Attar,^b Andrew P. Monkman^{b,*} and

Martin R. Bryce^{a,*}

^a Department of Chemistry, Durham University, Durham, UK, DH1 3LE ^b Department of Physics, Durham University, Durham, UK, DH1 3LE

Synthesis

Materials and Characterisation: Materials obtained from commercial suppliers were used without further purification. Solvents were dried and degassed following standard procedures. ¹H NMR and ¹³C NMR spectra were recorded on a Bruker Avance 400 spectrometer. Both ASAP-TOF and HR mass spectra were obtained either on a Xevo QToF mass spectrometer (Waters Ltd, UK) equipped with an Agilent 7890 GC (Agilent Technologies UK Ltd, UK) or a LCT Premier XE mass spectrometer and an Acquity UPLC (Waters Ltd, UK). Compounds 5^1 and 8^2 were obtained according to previously reported procedures.

Scheme S1. Synthesis of Monomer 4.

9,9-Di(4-aminophenyl)-2,7-diiodofluorene (6): A suspension of 2,7-diiodofluorenone (1) (6.4 g, 14.81 mmol) and aniline hydrochloride (2.0 g, 14.81 mmol) in aniline (7 mL) was heated at 185 °C for 4 h under argon. Upon cooling, the resulting precipitate was filtered and

washed with a large quantity of methanol. This solid was further purified by column chromatography (silica gel, hexane/AcOEt 1:1 v/v) to give compound **6** as a white solid (90%). M.p.: 261-263 °C. ¹H NMR (400 MHz, DMSO-d₆): $\delta = 7.70$ (s, 4H), 7.59 (s, 2H), 6.73-6.71 (m, 4H), 6.46-6.43 (m, 4H), 5.03 (s, 4H). ¹³C NMR (100 MHz, DMSO-d₆): $\delta = 154.3$, 147.4, 138.0, 135.9, 134.2, 131.2, 128.1, 122.7, 113.7, 93.9, 63.8. MS (ASAP): m/z = 600.0 ([M]⁺). HRMS (ASAP): m/z = calculated for C₂₅H₁₈N₂I₂ [M]⁺ 599.9560, Found: 599.9570.

9,9-Di(4-bromophenyl)-2,7-diiodofluorene (7): 9,9-Di(4-aminophenyl)-2,7-diiodofluorene (6) (2.00 g, 5.74 mmol) was dissolved in a HBr (48 %)/water/DMSO 4:1:4 v/v mixture (30 mL) at 0 °C. A solution of NaNO₂ (792 mg, 11.48 mmol) in water (20 mL) was then slowly added at 0 °C and stirred for 1 h at that temperature. The resulting yellow diazonium salts were filtered off and added to a solution of CuBr (1.64 g, 11.48 mmol) in HBr (48%) (20 mL) at 0 °C and stirred for 1 h at the same temperature. The mixture was then refluxed until no gas generation was observed. The resulting suspension was filtered and the precipitate was washed with water, then dried at 70 °C and chromatographed (silica gel, hexane/DCM 9:1 v/v), yielding 7 as a white solid (1.23 g, 42%). M.p.: 198-201 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.72 (d, *J* = 7.7 Hz, 2H), 7.62 (s, 2H), 7.49 (d, *J* = 7.7 Hz, 2H), 7.41-7.38 (m, 4H), 7.01-6.99 (m, 4H). ¹³C-NMR (100 MHz, CDCl₃): δ = 152.2, 143.3, 139.0, 137.6, 135.2, 132.2, 129.9, 122.5, 121.9, 94.0, 64.9. MS (ASAP): *m*/*z* = 725.8 ([M]⁺). HRMS (ASAP): *m*/*z* = calculated for C₂₅H₁₄Br₂¹²⁷I₂ [M]⁺ 725.7552, Found: 725.7575.

9,9'-(9,9-di(4-bromophenyl)-9H-fluorene-2,7-diyl)bis-9H-3,6-di-*tert*-**butylcarbazole** (4): 9,9-Di(4-bromophenyl)-2,7-diiodofluorene (7) (500 mg, 0.661 mmol), 3,6-di-*tert*butylcarbazole (8) (369 mg, 1.322 mmol), Pd₂(dba)₃ (12 mg, 0.013 mmol) and XPhos (32 mg, 0.066 mmol) were dissolved in dry toluene (15 mL) and degassed for 30 min, then ¹BuONa (180 mg, 1.850 mmol) was added and reaction mixture degassed for a further 15 min. The mixture was stirred overnight at 80 °C. Upon cooling, the mixture was diluted with toluene (50 mL) and washed with water. The organic layer was dried over Na₂SO₄, filtered and solvent removed at low pressure. The residue was chromatographed (silica gel, hexane/DCM 3:1 v/v) to give (4) as a pale yellow solid (497 mg, 73%). M.p.: 149-151 °C. ¹H-NMR (400 MHz, acetone-d₆): $\delta = 8.29$ (dd, $J_1 = 2.1$ Hz, $J_2 = 0.7$ Hz, 4H), 8.26 (d, $J_3 = 8.1$ Hz, 2H), 7.78 (d, $J_4 = 2.0$ Hz, 2H), 7.73 (dd, $J_3 = 8.1$ Hz, $J_4 = 2.0$ Hz, 2H), 7.54-7.52 (m, 4H), 7.47 (dd, $J_5 = 8.7$, $J_1 = 2.1$ Hz, 4H), 7.41-7.39 (m, 4H), 7.30 (dd, $J_5 = 8.7$ Hz, $J_2 = 0.7$ Hz, 4H), 1.43 (s, 36H). ¹³C-NMR (100 MHz, acetone-d₆): $\delta = 153.1$, 145.2, 143.9, 139.8, 139.0,

Fig. S1. Absorption spectra of polymer P1.

Fig. S2. Absorption spectra of polymer P2.

Fig. S3. CIE diagrams for **P1** and **P2** devices at the turn-on voltage (10 cd m⁻²) (left) and at the maximum brightness (right). The device structure is stated in Table 2, footnote a.

Fig. S4. A photograph of a P1 PLED. The device structure is stated in Table 2, footnote *a*.

References for the Supporting Information

- 1. F. Dewhurst and P. K. J. Shah, J. Chem. Soc. C, 1969, **11**, 1503–1504.
- 2. S. S. Palayangoda, X. Cai, R. M. Adhikari and D. C. Neckers, *Org. Lett.*, 2008, **10**, 281–284.