Electronic Supporting Information

Lanthanide ions (Eu³⁺, Tb³⁺, Sm³⁺, Dy³⁺) activated ZnO embedded zinc 2,5-pridinedicarboxylic metal organic frameworks for luminescent application

Tian-Wei Duan and Bing Yan*

Figure S1 XRD pattern of Zn(pdc)-1 and simulated $[Zn_2(pdc)_2(dmf)_2]_n \cdot ndmf$.

Figure S2 FTIR spectra of Zn(pdc)-1, Zn(pdc)-2, Zn(pdc)-3, Zn(pdc)-4, Zn(pdc)-5, Zn(pdc)-6.

Figure S3 Raman spectra of Zn(pdc)-2 (synthesized at 100 °C) and Zn(pdc)-6 (synthesized at 180 °C)

Figure S4 SEM of self-assembly ZnO superstructure.

Figure S5 XRD pattern of self-assembly ZnO superstructure.

Figure S6 Excitation spectra (dash line) and photoluminescence spectra (solid line) of $[Zn_2(pdc)_2(dmf)_2]_n \cdot ndmf$ and H_2pdc ligand.

Figure S7 UV-vis DRS of Zn(pdc)-1, Zn(pdc)-2, Zn(pdc)-3, Zn(pdc)-4, Zn(pdc)-5.

Figure S8 TGA curve (solid line) and DSC curve (dash line) for ZnO@Zn(pdc)-Euunder nitrogen.

Figure S9 Temperature dependentphotoluminescence spectra of ZnO@Zn(pdc)-Eu.

Figure S10 LED(A) emitting 395 nm light (B) emitting 365 nm light coated with a thin layer of ZnO@Zn(pdc)-Euturned on.

Sample	C[Zn] (mg/L)	C[Ln] (mg/L)	Atomic ratio (Ln : Zn)	
		(Ln=Eu, Tb, Sm, Dy)	(Ln=Eu, Tb, Sm, Dy)	
ZnO@Zn(pdc)-Eu	1.54	0.16	0.045	
ZnO@Zn(pdc)-Tb	1.41	0.14	0.041	
ZnO@Zn(pdc)-Sm	1.53	0.15	0.042	
ZnO@Zn(pdc)-Dy	1.49	0.15	0.042	

Table S1 ICP data of ZnO@Zn(pdc)-Ln (Ln = Eu, Tb, Sm, Dy).

Table S2 Thetop-six XRD diffraction peaks data.

	ZnO@Zn(pdc)-Eu		ZnO@Zn(pdc)-Tb		ZnO@Zn(pdc)-Sm		ZnO@Zn(pdc)-Dy	
HKL 20	20	Crystalline	20	Crystalline	20	Crystalline	20	Crystalline
	(nm)	20	(nm)	20	(nm)	20	(nm)	
100	32.1	17.1	32.0	16.2	32.0	15.4	32.0	18.0
002	34.6	17.5	34.6	14.9	34.6	18.2	34.6	22.2
101	36.5	14.7	36.5	12.8	36.4	13.3	36.5	13.6
102	47.8	21.5	47.8	15.5	47.8	21.1	47.7	28.0
110	56.8	16.5	56.8	10.5	56.8	9.20	56.8	12.7

Table S3 Photoluminescent data of	f ZnO@Zn(pdc)-Euexcited l	by 365, 375, 395 nm as solid state.
-----------------------------------	---------------------------	-------------------------------------

Wavelength (nm)	365	375	395	
$v_{00} (\mathrm{cm}^{-1})^a$	17271	17271	17271	
$v_{01} (cm^{-1})^a$	16921	16921	16921	
$v_{02} (\mathrm{cm}^{-1})^{\mathrm{a}}$	16313	16287	16260	
$v_{03} (\text{cm}^{-1})^{a}$	15385	15385	15385	
$v_{04} (\mathrm{cm}^{-1})^{\mathrm{a}}$	14306	14306	14306	
I_{01}	17710	25481	43103	
I_{02}	46757	72407	119784	
I_{02}/I_{01}	2.64	2.84	2.78	
τ (ms)	0.417	0.424	0.416	
τ_{exp}^{-1} (s ⁻¹)	2398	2358	2404	
$A_{\rm rad} ({\rm s}^{-1})$	236	242	238	
$A_{\rm nrad}$ (s ⁻¹)	2162	2116	2166	
η (%)	9.8%	10.2%	9.9%	

^{*a*}The energies of ${}^{5}D_{0} \rightarrow {}^{7}F_{J}$ transition (v_{0J}), the emission intensity of the ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ transition (I_{01}) and the ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition (I_{02}), the intensity ratios between the ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ and ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ transition (I_{02}/I_{01}), lifetimes (τ), radiative decay rates (A_{rad}), nonradiative decay rate (A_{nrad}), and the emission quantum efficiency (η) of the Eu³⁺ excited state were obtained at room temperature.