John B Goodenough Award

The John B Goodenough Award is to recognise exceptional and sustained contributions to the area of materials chemistry.

2013 Winner

Professor Anthony West

John B Goodenough Award 2013 Winner

Professor Anthony West, University of Sheffield

General information

  • Run biennially
  • The winner receives 2000, a medal and a certificate
  • The winner will complete a UK lecture tour 
  • The winner will be chosen by the Materials Chemistry Division Awards Committee

Guidelines for Nominators

  • Nominations open on 01 September 2014
  • Nominations close on 15 January 2015 
  • Only RSC Members can nominate for the 2015 Prizes and Awards Main portfolio 
  • Candidates may NOT nominate themselves
  • Open to scientists who have spent an appreciable part of their career working in the UK or Republic of Ireland 
  • When nominating recent Award and Prize winners, please remember that a person cannot be rewarded twice for substantially the same body of work       

To make a nomination please use our online awards nominations system at the bottom of the page to submit the following:

  • Your name, contact details, and membership number (please contact the RSC Membership team if you do not know your membership details)
  • The candidate's name and contact details 
  • An up to date CV for the candidate (no longer than one A4 side, 11pt text) which should include their date of birth, summary of education and career, a list of 5 relevant publications, total numbers of publications and patents (if appropriate) and website URL if relevant
  • A supporting statement (no longer than one A4 side, 11pt text) addressing the selection criteria 
  • A short citation describing what the nominee should be awarded for. This must be no longer than 250 characters (not including spaces) and ideally no longer than one sentence 
  • References are not required for this award     

Selection Criteria for RSC Awards

The selection committee(s) will consider the following aspects of all nominations for scientific research Awards as appropriate:

  • Originality of research
  • Impact of research
  • Quality of publications and/or patents and/or software
  • Innovation
  • Professional standing
  • Collaborations and teamwork
  • Other indicators of esteem indicated by the nominee/nominator

Previous Winners

John B Goodenough Award Previous Winners

2009 - present

History of the Award

John B Goodenough
Established in 2008 the John B Goodenough Award (previously advertised as the Materials Chemistry Forum Lifetime Award) recognises the work of John Bannister Goodenough who helped develop the first RAM (random-access memory) of the digital computer.

Goodenough received a degree in Mathematics at Yale whilst serving in the U.S. army air force. He went on to become a research scientist and group leader at MIT Lincoln Laboratory for 24 years. During this time Goodenough made significant contributions to the development of the first RAM.  He formulated the concept of cooperative orbital ordering to remove d-orbital degeneracy; the resulting crystallographic distortions are Jahn-Teller distortions.

Goodenough also recognized that short-range orbital ordering built in chemical inhomogeneities that enabled control of the magnetic B-H loop for ferrospinel memory cores. He applied the concept of cooperative orbital order to account for the anisotropic magnetic order in the system La1-xCaxMnO3, and formulated the rules for the sign of the spin-spin interactions - the Goodenough-Kanamori rules. In the 1960s, his exploration of the transition from localized to itinerant d-electron behaviour not only resolved the origin of the metallic conductivity found in some perovskites, but also led to his recognition that this transition is first-order and is evident in charge-density waves.

Termination by Congress of such fundamental studies at Lincoln Laboratory led Goodenough to explore energy materials as Professor and Head of the Inorganic Chemistry Laboratory, University of Oxford, where he developed layered and spinel oxides as cathodes for the Li rechargeable battery. SONY, of Japan, adopted his layered Li1-xCoO2 cathode to launch the cell telephone and laptop computer initiating the "wireless revolution".

On retirement from Oxford Goodenough joined the Cockrell School of Engineering at the University of Texas, Austin.  His work informs the design of new technical materials with investigations into the relationship between the chemical, structural and electrical properties of solids.  Recently he has identified a ceramic anode material for a solid oxide fuel cell operating on natural gas.  His work has gained wide recognition, including through receipt of the Japan Prize (2001) and the Presidential Enrico Fermi Award (2009).

Make a Nomination

Related Links

Link icon Submit your nomination online
Deadline for nominations 15 January 2015. Your nomination can be saved and completed at any time

External links will open in a new browser window

Materials Chemistry Division Awards Committee

  • Howard Colquhoun (Chair), Reading University
  • Martin Heeney, Imperial College London
  • Marie-Beatrice Madec, Solvay
  • Milo Shaffer, Imperial College London
  • Anthony West, University of Sheffield

Contact and Further Information

Royal Society of Chemistry, Thomas Graham House, Milton Road, Science Park, Cambridge, CB4 0WF
Tel: +44 (0)1223 432384
Fax: +44 (0)1223 423623