New Directions in Molecular Scattering Faraday Discussion

8 May 2024 11:00 - 10 May 2024 13:00, Edinburgh, United Kingdom

Phishing Warning
We are aware that some speakers and delegates have been approached by companies claiming to operate on behalf of the Royal Society of Chemistry to book their travel and accommodation for our conferences. Please note that whilst we do sometimes work with accommodation providers in order to facilitate hotel bookings, they would never approach you in the first instance. Details of accommodation providers that we are working with are in the ‘accommodation’ section of this webpage. If you are unsure about an e-mail / phone call you receive, please contact us and do not provide any credit card details or personal information.


Join us in either Edinburgh or online in May 2024 for this edition of the Faraday Discussion series. The Faraday Discussions are unique international discussion meetings that address current and emerging topics at the forefront of the physical sciences.

This meeting is for established and early-career scientists, postgraduate students and industrial researchers working on various aspects of molecular scattering. It will provide an ideal forum for cross-fertilisation of ideas and understanding between the distinct but adjacent communities working in thsis exciting field, as well as those in application areas who can benefit from and implement the results. On behalf of the organising committee, we look forward to welcoming you to Edinburgh, or if you are joining us virtually, online.

Ken McKendrick


Faraday Discussions have a special format where primary research papers written by the speakers are distributed to all participants before the meeting, and most of the meeting is devoted to discussing the papers. All delegates at the meeting, not just speakers, have the opportunity to make comments, ask questions, or present complementary or contradictory measurements and calculations during the discussion sessions. In addition, there is a dedicated poster session where further discussion takes place. The research papers and a record of the discussion are published in the journal Faraday Discussions.


The meeting will comprise four inter-related themes, covering all types of inelastic and reactive two-body collisions. The overall focus is on the growing capability to investigate collisions involving larger, more-complex systems than have previously been accessible to study. Small, typically three-atom, systems have been the established bedrock of molecular collision dynamics. The transition to systems of more practical interest involving greater complexity presents profound conceptual and practical challenges to the established ‘state-to-state’ philosophy. Improved experimental and theoretical capabilities enable the study of scattering systems more typical of real-world applications, and also offer the ability to probe processes in extreme environments. However, many of these approaches are still able to exploit the benefits of quantum-state preparation, stereochemical control of reactants, and detailed characterisation of products typical of studies in smaller systems. Looking beyond the conventional near-thermal regime, studies at successively lower translational energies have emerged as a major topical area, and there is also increasing interest in studying processes at very high collision energies, typical of ionised systems. The shift in focus towards more complex systems also applies to collisions of gas-phase molecules with condensed-phase surfaces. Such collisions are widespread in diverse environments extending from atmospheric chemistry, through heterogeneous catalysis, to biological respiration, but despite their obvious applicability they have been much less well studied than bimolecular collisions in the gas phase.

Manipulation and control of translational energy or stereochemistry of collision partners

This session will explore key challenges in applying existing experimental and theoretical methods to a wider range of collision systems, going beyond the existing three-atom benchmarks.  It will cover innovations in the use of control methods using different forms of physical interaction, and new, untested methods of control, such as coupling molecules to external quantized systems or by quantum entanglement.

Scattering in extreme environments

This session will focus on key challenges in: (i) overcoming the ‘technology-driven’ aspects of cold collisions, stemming from their origins in atomic physics, to produce cold molecular species of more widespread chemical interest; (ii) developing theoretical approaches capable of capturing uniquely quantum phenomena in very low-energy collisions; (iii) the efficient creation of neutral molecules with very high translational energies; (iv) the development of new tools to study the products of hyperthermal molecule-molecule, ion-molecule, or electron-molecule collisions, or collisions of internally highly excited molecules; and (v) the development of theoretical methods to generate accurate, non-adiabatically coupled potential energy surfaces and carry out scattering calculations on them at high energies where a large number of product channels are open.

Scattering of larger molecules

This session will focus on a number of key challenges associated with studying scattering processes involving larger molecules. These include (i) making reliable measurements of branching ratios for reactions of larger molecules with multiple product channels; (ii) developing methods to study new phenomena which only apply to larger molecules, such as the effect of molecular conformations; (iii) studying the multibody effects of solvent molecules on conventional ‘bimolecular’ reactions; (iv) developing alternative theoretical methods for larger systems to overcome the limiting, N3 dependence of conventional time-independent quantum scattering; and (v) interfacing with the end-user communities in e.g. the atmosphere, combustion, catalysis, astrochemistry and plasmas to direct effort towards those larger systems of most relevance.

Scattering at condensed-phase surfaces

This session will focus on key challenges associated with studying scattering at surfaces.  These include:(i) understanding how chemical functionality and atomic-level structure affects the branching between different outcomes for collisions at surfaces; (ii) understanding the role of mode-selectivity in promoting reactivity and controlling branching between outcomes of collisions at solid surfaces; (iii) achieving gas-phase measurements close to solid surfaces of real catalytic interest under more realistic operating conditions; (iv) studying scattering from liquid, especially aqueous, surfaces with non-negligible vapour pressure; (v) carrying out reliable scattering calculations at condensed phase surfaces involving large numbers of atoms and without necessarily any long-range order; and (vi) exploring possible nonadiabatic electron-nucleus coupling in scattering processes.
Alec Wodtke, Introductory lecturer, University of Göttingen and Max Planck Institute, Germany

Alec Wodtke is an experimental chemist working on chemical reaction dynamics. He was an Asst. Prof. at UCSB where he developed methods for studying gas-phase collision dynamics of highly vibrationally excited molecules. This produced results on topics ranging from the quantum nature of chemical isomerization, to the role of hot molecules in stratospheric ozone production. He received several awards for his work and advanced to tenured Assoc. Prof. and then Full Prof., eventually becoming Chemistry department Chairman. In 2010, he was awarded an Alexander von Humboldt Professor award and moved to Germany to become a Max Planck Director and University Professor in Göttingen. Here, he established the Department of Dynamics at Surfaces, which explores a wide variety of problems in fundamental surface chemistry emphasizing interactions between experiment and theory. He was also honored with the 2022 Gerhard Ertl Lecture Award.

Mark Brouard, Closing remarks, University of Oxford, United Kingdom

Mark Brouard is a Professor of Chemistry at the University of Oxford, and a Tutorial Fellow at Jesus College, Oxford. Between 2015 and 2023 he was the Head of the Department of Chemistry. He runs a research group in experimental Physical Chemistry investigating a mix of fundamental and more applied problems. He has a particular interest in studying the detailed mechanisms of gas phase reaction and photodissociation processes. In addition to his work on stereodynamical effects in chemical reactions, his group helped to develop a novel CMOS based imaging sensor that can be used for a range of applications, particularly for correlated imaging and imaging mass spectrometry applications. Further information about the research interests of his group can be found on his webpage.

Astrid Bergeat, University of Bordeaux, France

As a lecturer at the University Institute of Technology, I started with kinetic studies (branching rate at room temperature and velocity coefficient at low temperatures). My research now focuses on the dynamics of reactive or inelastic collisions of interest for astrophysics (studies performed in a crossed molecular beam machine). She is an expert for the KIDA astrochemistry database and a member of the EMAA steering committee.

Helen Chadwick, Swansea University, United Kingdom

Helen Chadwick completed both her MChem and PhD at the University of Oxford, on stereodynamic effects in gas phase scattering. She then moved to the Group for Gas-Surface Dynamics at the Ecole Polytechnique Federale de Lausanne in Switzerland to perform quantum state resolved gas-surface reactivity experiments. Helen was awarded a 2 year Advanced Postdoc Mobility Fellowship from the Swiss National Science Foundation to join the Theoretical Chemistry group at Leiden University where she performed calculations of gas-surface reactivity. After this, she took her current position as a senior post-doctoral researcher in the Surface Dynamics group at Swansea University.
The focus of her research is the development of both the experimental and analytical methods associated with the unique magnetic manipulation technique the group uses to control and manipulate the rotational orientation and nuclear spin projection states of closed shell ground state molecules both before and after a collision with a surface. Projects that she has worked on include the rotational orientation dependence of both the elastic and inelastic scattering of hydrogen from surfaces, studying the energy transfer between a molecule and surface with high resolution and investigating whether nuclear spin-conversion or nuclear spin-flips can occur in a single gas-surface collision.

Bin Jiang, USTC Hefei, China

Bin Jiang is Professor of Chemical Physics at University of Science and Technology of China since 2016. He received his Ph.D. degree from Nanjing University in 2012 and worked with Prof. Hua Guo at University of New Mexico as a postdoctoral fellow in 2012-2015. His current interests include the development of machine learning potential energy surfaces for molecular, condensed phase, and interficial systems, first-principles scattering dynamics on the energy transfer at the gas-surface interface. He received the Chinese Chemical Society Tang Ao-Chin Youth Award on Theoretical Chemistry in 2021.

Heather Lewandowski, University of Colorado, United States

Heather Lewandowski received her B.S. in physics from Michigan Tech in 1997 and her Ph.D. in physics from the University of Colorado in 2002. She was then an NRC Postdoctoral fellow at the National Institute of Standards and Technology in Boulder. She is currently a professor and associate chair of physics at the University of Colorado, and a fellow of JILA. She leads two research programs, one in experimental molecular physics, and the other in physics education research. Her molecular physics research efforts focus on studying interactions and reactions of cold, chemically important molecules and ions. Her physics education research program studies ways to increase students’ proficiency in scientific practices such as using models and quantitative reasoning in experimental physics.

Roland Wester, University of Innsbruck, Austria

Roland Wester received his Ph.D. in Physics from the University of Heidelberg in 1999 for Coulomb explosion imaging experiments of molecular ions. After a postdoc at the University of California in Berkeley and several years at the University of Freiburg he became a full professor at the University of Innsbruck. His research lies in the field of molecular spectroscopy and reaction dynamics, with a focus on cold collisions and reactions of ions.

  • Gert-Jan Kroes Leiden University, Netherlands
  • Kang-Kuen Ni Harvard University, United States


TBC, Edinburgh, United Kingdom

Contact information
Showing all upcoming events
Start Date
End Date
Subject area
Event type


E-mail Enquiry