Periodic Table > Nobelium
 

Terminology


Allotropes
Some elements exist in several different structural forms, these are called allotropes.


For more information on Murray Robertson’s image see Uses and properties facts below.

 

Fact box terminology


Group
Elements appear in columns or ‘groups’ in the periodic table. Members of a group typically have similar properties and electron configurations in their outer shell.


Period
Elements are laid out into rows or ‘periods’ so that similar chemical behaviour is observed in columns.


Block
Elements are organised into blocks by the orbital type in which the outer electrons are found. These blocks are named for the characteristic spectra they produce: sharp, principal, diffuse, and fundamental.


Atomic Number
The number of protons in the nucleus.


Atomic Radius/non -bonded (Å)
based on Van der Waals forces (where several isotopes exist, a value is presented for the most prevalent isotope). These values were calculated using a multitude of methods including crystallographic data, gas kinetic collision cross sections, critical densities, liquid state properties, for more details please refer to the CRC Handbook of Chemistry and Physics.


Electron Configuration
The arrangements of electrons above the last (closed shell) noble gas.


Isotopes
Elements are defined by the number of protons in its centre (nucleus), whilst the number of neutrons present can vary. The variations in the number of neutrons will create elements of different mass which are known as isotopes.


Melting Point (oC)
The temperature at which the solid-liquid phase change occurs.


Melting Point (K)
The temperature at which the solid-liquid phase change occurs.


Melting Point (oF)
The temperature at which the solid-liquid phase change occurs.


Boiling Point (oC)
The temperature at which the liquid-gas phase change occurs.


Boiling Point (K)
The temperature at which the liquid-gas phase change occurs.


Boiling Point (oF)
The temperature at which the liquid-gas phase change occurs.


Sublimation
Elements that do not possess a liquid phase at atmospheric pressure (1 atm) are described as going through a sublimation process.


Density (g cm-3)
Density is the mass of a substance that would fill 1 cm3 at room temperature.


Relative Atomic Mass
The mass of an atom relative to that of Carbon-12. This is approximately the sum of the number of protons and neutrons in the nucleus. Where more than one isotope exists the value given is the abundance weighted average.


Key Isotopes (% abundance)
An element must by definition have a fixed number of protons in its nucleus, and as such has a fixed atomic number, however variants of an element can exist with differing numbers of neutrons, and hence a different atomic masses (e.g. 12C has 6 protons and 6 neutrons and 13C has 6 protons and 7 neutrons).


CAS number
The Chemical Abstracts Service registry number is a unique identifier of a particular chemical, designed to prevent confusion arising from different languages and naming systems (where several isotopes exist, a value is presented for the most prevalent isotope).

Fact box

 
Group Actinides  Melting point 827 oC, 1520.6 oF, 1100.15 K 
Period Boiling point Unknown 
Block Density (g cm-3) Unknown 
Atomic number 102  Relative atomic mass 259.101  
State at room temperature Solid  Key isotopes 259No 
Electron configuration [Rn] 5f147s2  CAS number 10028-14-5 
ChemSpider ID 23207 ChemSpider is a free chemical structure database
 

Uses and properties terminology


Image Explanation

Murray Robertson is the artist behind the images which make up Visual Elements. This is where the artist explains his interpretation of the element and the science behind the picture.


Natural Abundance

Where this element is most commonly found in nature.


Biological Roles

The elements role within the body of humans, animals and plants. Also functionality in medical advancements both today and years ago.


Appearance

The description of the element in its natural form.

Uses and properties

 
Image explanation
Iridium is one of the rarest elements on Earth. It is found uncombined in nature in sediments that were deposited by rivers. It is commercially recovered as a by-product of nickel refining.

A very thin layer of iridium exists in the Earth’s crust. It is thought that this was caused by a large meteor or asteroid hitting the Earth. Meteors and asteroids contain higher levels of iridium than the Earth’s crust. The impact would have caused a huge dust cloud depositing the iridium all over the world. Some scientists think that this could be the same meteor or asteroid impact that wiped out the dinosaurs.
Appearance
Nobelium is a radioactive metal. Only a few atoms have ever been made. Its half-life is only 58 minutes.
Uses
Nobelium has no uses outside research.
Biological role
Nobelium has no known biological role. It is toxic due to its radioactivity.
Natural abundance
Nobelium is made by bombarding curium with carbon in a device called a cyclotron.
 
Atomic data terminology

Atomic radius/non -bonded (Å)
Based on Van der Waals forces (where several isotopes exist, a value is presented for the most prevalent isotope). These values were calculated using a multitude of methods including crystallographic data, gas kinetic collision cross sections, critical densities, liquid state properties,for more details please refer to the CRC Handbook of Chemistry and Physics.


Electron affinity (kJ mol-1)
The energy released when an additional electron is attached to the neutral atom and a negative ion is formed (where several isotopes exist, a value is presented for the most prevalent isotope). *


Electronegativity (Pauling scale)
The degree to which an atom attracts electrons towards itself, expressed on a relative scale as a function bond dissociation energies, Ed in eV. χA - χB =(eV)-1/2sqrt(Ed(AB)-[Ed(AA)+Ed(BB)]/2), with χH set as 2.2 (where several isotopes exist, a value is presented for the most prevalent isotope).


1st Ionisation energy (kJ mol-1)
The minimum energy required to remove an electron from a neutral atom in its ground state (where several isotopes exist, a value is presented for the most prevalent isotope).


Covalent radius (Å)
The size of the atom within a covalent bond, given for typical oxidation number and coordination (where several isotopes exist, a value is presented for the most prevalent isotope). ***

Atomic data

 
Atomic radius, non-bonded (Å) 2.46 Covalent radius (Å) 1.76
Electron affinity (kJ mol-1) Unknown Electronegativity
(Pauling scale)
Unknown
Ionisation energies
(kJ mol-1)
 
1st
641.627
2nd
-
3rd
-
4th
-
5th
-
6th
-
7th
-
8th
-
 

Mining/Sourcing Information

Data for this section of the data page has been provided by the British Geological Survey. To review the full report please click here or please look at their website here.


Key for numbers generated


Governance indicators

1 (low) = 0 to 2

2 (medium-low) = 3 to 4

3 (medium) = 5 to 6

4 (medium-high) = 7 to 8

5 (high) = 9


Reserve distribution (%)

1 (low) = 0 to 30 %

2 (medium-low) = 30 to 45 %

3 (medium) = 45 to 60 %

4 (medium-high) = 60 to 75 %

5 (high) = 75 %

(Where data are unavailable an arbitrary score of 2 was allocated. For example, Be, As, Na, S, In, Cl, Ca and Ge are allocated a score of 2 since reserve base information is unavailable. Reserve base data are also unavailable for coal; however, reserve data for 2008 are available from the Energy Information Administration (EIA).)


Production Concentration

1 (low) = 0 to 30 %

2 (medium-low) = 30 to 45 %

3 (medium) = 45 to 60 %

4 (medium-high) = 60 to 75 %

5 (high) = 75 %


Crustal Abundance

1 (low) = 100 to 1000 ppm

2 (medium-low) =10 to 100 ppm

3 (medium) = 1 to 10 ppm

4 (medium-high) = 0.1 to 1 ppm

5 (high) = 0.1 ppm

(Where data are unavailable an arbitrary score of 2 was allocated. For example, He is allocated a score of 2 since crustal abundance data is unavailable.)


Explanations for terminology


Crustal Abundance (ppm)

The abundance of an element in the Earth's crust in parts-per-million (ppm) i.e. The number of atoms of this element per 1 million atoms of crust.


Sourced

The country with the largest reserve base.


Reserve distribution (%)

This is a measure of the spread of future supplies, recording the percentage of a known resource likely to be available in the intermediate future (reserve base) located in the top three countries.


Production Concentrations

This reports the percentage of an element produced in the top three countries. The higher the value, the larger risk there is to supply.


Political stability of top producer

The World Bank produces a global percentile rank of political stability. The scoring system is given below, and the values for all three production countries were summed.


Relative Supply Risk Index

The Crustal Abundance, Reserve distribution (%), Production Concentration and Governance Factor scores are summed and then divided by 2, to provide an overall Relative Supply Risk Index.

Supply risk

 
Relative supply risk Unknown
Crustal abundance (ppm) Unknown
Recycling rate (%) Unknown
Substitutability Unknown
Production concentration (%) Unknown
Reserve distribution (%) Unknown
Top 3 producers
  • Unknown
Top 3 reserve holders
  • Unknown
Political stability of top producer Unknown
Political stability of top reserve holder Unknown
 

Oxidation states and isotopes


Key for Isotopes


Half Life
  y years
  d days
  h hours
  m minutes
  s seconds
Mode of decay
  α alpha particle emission
  β negative beta (electron) emission
  β+ positron emission
  EC orbital electron capture
  sf spontaneous fission
  ββ double beta emission
  ECEC double orbital electron capture

Terminology


Common Oxidation states
The oxidation state of an atom is a measure of the degree of oxidation of an atom. It is defined as being the charge that an atom would have if all bonds were ionic. Free atoms have an oxidation state of 0, and the sum of oxidation numbers within a substance must equal the overall charge.


Important Oxidation states
The most common oxidation states of an element in its compounds.


Isotopes
Elements are defined by the number of protons in its centre (nucleus), whilst the number of neutrons present can vary. The variations in the number of neutrons will create elements of different mass which are known as isotopes.

Oxidation states and isotopes

 
Common oxidation states 3, 2
Isotopes Isotope Atomic mass Natural abundance (%) Half life Mode of decay
  259No 259.101 - 58 m  α 
        EC 
        sf 
 

Pressure and temperature - advanced terminology


Specific heat capacity (J kg-1 K-1)

Specific heat capacity is the amount of energy needed to change the temperature of a kilogram of a substance by 1 K.


Young's modulus (GPa)

Young's modulus is a measure of the stiffness of a substance, that is, it provides a measure of how difficult it is to extend a material, with a value given by the ratio of tensile strength to tensile strain.


Shear modulus (GPa)

The shear modulus of a material is a measure of how difficult it is to deform a material, and is given by the ratio of the shear stress to the shear strain.


Bulk modulus (GPa)

The bulk modulus is a measure of how difficult to compress a substance. Given by the ratio of the pressure on a body to the fractional decrease in volume.


Vapour Pressure (Pa)

Vapour pressure is the measure of the propensity of a substance to evaporate. It is defined as the equilibrium pressure exerted by the gas produced above a substance in a closed system.

Pressure and temperature data – advanced

 
Specific heat capacity
(J kg-1 K-1)
Unknown Young's modulus (GPa) Unknown
Shear modulus (GPa) Unknown Bulk modulus (GPa) Unknown
Vapour pressure  
Temperature (K)
400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
Pressure (Pa)
- - - - - - - - - - -
  Help text not available for this section currently

History

This element’s history is one of controversy. In 1956, a team led by Georgy Flerov at the Institute of Atomic Energy, Moscow, synthesised element 102 by bombarding plutonium with oxygen and got atoms of element 102, isotope-252. However, they did not report their success.


In 1957, the Nobel Institute of Physics in Stockholm announced isotope-253 which had been made by bombarding curium with carbon. Then in 1958, Albert Ghiorso at the Lawrence Berkeley Laboratory (LBL) claimed isotope-254, also made by bombarding curium with carbon. These claims were challenged by the Russians.


In 1962-63, the Russian Joint Institute of Nuclear Research, based at Dubna, synthesised isotopes 252 to 256. Ghiorso still insisted his group were the first to discover element 102, and so began years of recrimination, finally ending in the International Union of Pure and Applied Chemists deciding in favour of the Russians being the discoverers.

  Help text not available for this section currently

Podcasts

Listen to Nobelium Podcast
Transcript :

Chemistry in its element - nobelium


(Promo) 

You're listening to Chemistry in its element brought to you by Chemistry World, the magazine of the Royal Society of Chemistry 

(End promo) 

Meera Senthilingam 

This week 'Oh, how to name an element?' Especially when several groups claim its discovery. And, once named, how to say it? Nobellium? Nobeelium? To clarify, here's Brian Clegg. 

Brian Clegg 

You'd think it was pretty straightforward to decide what an element is called. But element 102 has had more than its fair share of misunderstandings and arguments. To begin with there's the matter of how to pronounce its current name - nobellium (because it comes from the same root as the Nobel Prize) or nobeelium modelled on the way we say helium. Even the Royal Society of Chemistry's representatives had a raging discussion on this when I asked them, before plumping for nobeelium. And that's just the pronunciation - the name itself took a fair amount of sorting out. 

Element 102 is one of the more stable of the short-lived artificial transfermium elements with a half life of 58 minutes for nobelium 259. But how did it get that name? Element names follow four rough patterns. Some - gold, for instance - had their names before we even knew what an element was. Others, like einsteinium, were named after a famous scientist who had a significant role to play in our understanding of atoms, while a third group are named after the place where they were discovered - take californium, for example. Finally, there are the odds and sods. The elements that don't fit anywhere else.

Nobelium can be seen as one of these. Some would argue that Alfred Nobel was a famous scientist. It's true that he was technically a chemist, but I challenge anyone to come up with a scientific discovery that Nobel is famous for. Born in Stockholm in 1833, Nobel was the son of an engineer. He worked in Paris with the inventor of nitroglycerine, a highly explosive but also very unstable substance, and dedicated a number of years to finding a way to make it usable, finally, in 1867, patenting the substance that would make his fortune, dynamite.

Nobel was responsible for the invention of a number of explosives and other chemical products, but was very much an industrial chemist, not the sort of person an element gets named after. The name, you might imagine, instead derives from the Nobel Prize, instituted in Nobel's will, where he declared (somewhat to the surprise of his family) that his fortune would be spent on a foundation to provide prizes in Physics, Chemistry, Physiology or Medicine, Literature and Peace. But thinking nobelium got its name from the Nobel Prize would be incorrect as well. 

In all fairness, it should never have been given this name. The element was first produced   in 1956, at the Joint Institute for Nuclear Research at Dubna, then in the USSR. The discoverers named it joliotium after Irene Joliot-Curie, Pierre and Marie Curie's daughter. They seem at the time to have been totally ignored by the international community. It was only in 1997 that the International Union of Pure and Applied Chemistry, the body that polices the naming of elements, admitted that the Russian lab did first create element 102. But by then it was too late. 

Just two years after the creation of joliotium in Dubna, nobelium was made at the Heavy Ion Linear Accelerator at Berkeley, California, by bombarding curium with carbon ions. This experiment was undertaken by the team including Albert Ghiorso and Glenn T. Seaborg, who were responsible for isolating so many elements at Berkeley. Yet they didn't give the element its name. It had already been called nobelium for a year.

This is because a team at the Nobel Institute of Physics in Stockholm had announced the discovery of a new element the year before in 1957. Using a cyclotron to undertake a similar reaction, they thought they had produced an isotope of element 102 with a half-life of ten minutes. Not unnaturally they wanted to call the element nobelium. But their experiment could not be verified - such an isotope has never been shown to exist. So nobelium is a one-off, fitting somewhere between groups three and four. It's an element that is named after the place it was thought that it was first isolated, but really it wasn't. 

Like most of the short-lived artificial elements, we don't know a huge amount about nobelium, though it has been produced in a range of ten different isotopes. It's expected from its position in the table that it would be a grey or silver metal, but there has not been enough made to check this. We do know a little about its chemistry. Unlike most of the actinides, the floating bar of elements that should be squeezed between actinium and lawrencium, which tend to have stable ions with a valency of 3 - that's to say, three electrons' worth of positive charge - nobelium's most stable ions are of valency 2.

Like all the artificial transfermium elements, nobelium is neither use nor ornament. Producing it was an achievement, but it has no practical value, nor is it ever likely to gain one. Although there was initially doubt over the naming of nobelium, perhaps it is only right that the name that finally stuck is associated with the Nobel Prize. It has been suggested that Alfred Nobel, influenced by his friend the peace campaigner Bertha von Suttner, set up the Nobel Prize as an apology for the harm caused by explosives. Out of the negative arose something very positive. In the same way, the Dubna laboratory might have missed out on the initial glory but now they are recognized as discoverers and linked forever to a name that has so much more impact than joliotium could ever have managed.

Meera Senthilingham

So in the end, there was victory all round. That was Brian Clegg with the non-explosive chemistry of nobelium. Now, next week, an element that seems to be misunderstood.

Quentin Cooper

Mistaken-identity history, it's miscredited discoverer, its misleading and often mis-spelled name, all add to the aura of comedy and confusion around molybdenum.....and yet it's an element that's right at the root of life - not just human life, but pretty much all life on the planet: yes you'll find tiny amounts of it in everything from the filaments of electric heaters to missiles to protective coatings in boilers, and its high performance at high temperatures mean it has a range of commercial applications.

Meera Senthilingham

What are those applications, you ask? Well, to find out join Quentin Cooper for next week's Chemistry in its element. Until then, I'm Meera Senthilingham and thank you for listening.

(Promo)

Chemistry in its element  is brought to you by the Royal Society of Chemistry and produced by thenakedscientists dot com. There's more information and other episodes of Chemistry in its element on our website at chemistryworld dot org forward slash elements. 

(End promo)

 

  Help text not available for this section currently
  Help Text

Resources

Description :
The history and background of the Nobel prizes.
Description :
This material introduces 5 Commerical Skills Modules for Chemists developed by KKI Associates and the School of Chemistry at the University of Edinburgh. This resource and its components are licensed...
Description :
Can students spot the potential value in each of 5 potential chemistry-based projects? This resource and its components are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 ...
Description :
Can students estimate the potential time and the likely milestones of 2 out of the 5 chemistry-based projects? This resource and its components are licensed under a Creative Commons Attribution-NonCo...
Description :
Students are asked to summarise and critique 2 out of the 5 chemistry-based projects, based on their previous work, and present their preferred option to a "business" audience. This resource and its ...
Description :
Can students identify and quantify users/customers who receive benefits from 2 out of the 5 chemistry-based projects? This resource and its components are licensed under a Creative Commons Attributio...
 

Terms & Conditions


Images © Murray Robertson 1999-2011
Text © The Royal Society of Chemistry 1999-2011

Welcome to "A Visual Interpretation of The Table of Elements", the most striking version of the periodic table on the web. This Site has been carefully prepared for your visit, and we ask you to honour and agree to the following terms and conditions when using this Site.


Copyright of and ownership in the Images reside with Murray Robertson. The RSC has been granted the sole and exclusive right and licence to produce, publish and further license the Images.


The RSC maintains this Site for your information, education, communication, and personal entertainment. You may browse, download or print out one copy of the material displayed on the Site for your personal, non-commercial, non-public use, but you must retain all copyright and other proprietary notices contained on the materials. You may not further copy, alter, distribute or otherwise use any of the materials from this Site without the advance, written consent of the RSC. The images may not be posted on any website, shared in any disc library, image storage mechanism, network system or similar arrangement. Pornographic, defamatory, libellous, scandalous, fraudulent, immoral, infringing or otherwise unlawful use of the Images is, of course, prohibited.


If you wish to use the Images in a manner not permitted by these terms and conditions please contact the Publishing Services Department by email. If you are in any doubt, please ask.


Commercial use of the Images will be charged at a rate based on the particular use, prices on application. In such cases we would ask you to sign a Visual Elements licence agreement, tailored to the specific use you propose.


The RSC makes no representations whatsoever about the suitability of the information contained in the documents and related graphics published on this Site for any purpose. All such documents and related graphics are provided "as is" without any representation or endorsement made and warranty of any kind, whether expressed or implied, including but not limited to the implied warranties of fitness for a particular purpose, non-infringement, compatibility, security and accuracy.


In no event shall the RSC be liable for any damages including, without limitation, indirect or consequential damages, or any damages whatsoever arising from use or loss of use, data or profits, whether in action of contract, negligence or other tortious action, arising out of or in connection with the use of the material available from this Site. Nor shall the RSC be in any event liable for any damage to your computer equipment or software which may occur on account of your access to or use of the Site, or your downloading of materials, data, text, software, or images from the Site, whether caused by a virus, bug or otherwise.


We hope that you enjoy your visit to this Site. We welcome your feedback.

References

 
Images:  Visual Elements © Murray Robertson 2011
Mining and Sourcing data:  British Geological Survey – natural environment research council.
Text:  John Emsley Nature’s Building Blocks: An A-Z Guide to the Elements, Oxford University Press, 2nd Edition, 2011.
Additional information for platinum, gold, neodymium and dysprosium obtained from Material Value Consultancy Ltd www.matvalue.com
Data: CRC Handbook of Chemistry and Physics, CRC Press, 92nd Edition, 2011.
G. W. C. Kaye and T. H. Laby Tables of Physical and Chemical Constants, Longman, 16th Edition, 1995.
Members of the RSC can access these books through our library.