Periodic Table > Sodium
 

Terminology


Allotropes
Some elements exist in several different structural forms, these are called allotropes.


For more information on Murray Robertson’s image see Uses and properties facts below.

 

Fact box terminology


Group
Elements appear in columns or ‘groups’ in the periodic table. Members of a group typically have similar properties and electron configurations in their outer shell.


Period
Elements are laid out into rows or ‘periods’ so that similar chemical behaviour is observed in columns.


Block
Elements are organised into blocks by the orbital type in which the outer electrons are found. These blocks are named for the characteristic spectra they produce: sharp, principal, diffuse, and fundamental.


Atomic Number
The number of protons in the nucleus.


Atomic Radius/non -bonded (Å)
based on Van der Waals forces (where several isotopes exist, a value is presented for the most prevalent isotope). These values were calculated using a multitude of methods including crystallographic data, gas kinetic collision cross sections, critical densities, liquid state properties, for more details please refer to the CRC Handbook of Chemistry and Physics.


Electron Configuration
The arrangements of electrons above the last (closed shell) noble gas.


Isotopes
Elements are defined by the number of protons in its centre (nucleus), whilst the number of neutrons present can vary. The variations in the number of neutrons will create elements of different mass which are known as isotopes.


Melting Point (oC)
The temperature at which the solid-liquid phase change occurs.


Melting Point (K)
The temperature at which the solid-liquid phase change occurs.


Melting Point (oF)
The temperature at which the solid-liquid phase change occurs.


Boiling Point (oC)
The temperature at which the liquid-gas phase change occurs.


Boiling Point (K)
The temperature at which the liquid-gas phase change occurs.


Boiling Point (oF)
The temperature at which the liquid-gas phase change occurs.


Sublimation
Elements that do not possess a liquid phase at atmospheric pressure (1 atm) are described as going through a sublimation process.


Density (kgm-3)
Density is the weight of a substance that would fill 1 m3 (at 298 K unless otherwise stated).


Relative Atomic Mass
The mass of an atom relative to that of Carbon-12. This is approximately the sum of the number of protons and neutrons in the nucleus. Where more than one isotope exists the value given is the abundance weighted average.


Key Isotopes (% abundance)
An element must by definition have a fixed number of protons in its nucleus, and as such has a fixed atomic number, however variants of an element can exist with differing numbers of neutrons, and hence a different atomic masses (e.g. 12C has 6 protons and 6 neutrons and 13C has 6 protons and 7 neutrons).


CAS number
The Chemical Abstracts Service registry number is a unique identifier of a particular chemical, designed to prevent confusion arising from different languages and naming systems (where several isotopes exist, a value is presented for the most prevalent isotope).

Fact box

 
Group Melting point 97.794 oC, 208.029 oF, 370.944 K 
Period Boiling point 882.94 oC, 1621.292 oF, 1156.09 K 
Block Density (kg m-3) 966 
Atomic number 11  Relative atomic mass 22.99  
State at room temperature Solid  Key isotopes 23Na 
Electron configuration [Ne] 3s1  CAS number 7440-23-5 
ChemSpider ID 4514534 ChemSpider is a free chemical structure database
 

Uses and properties terminology


Image Explanation

Murray Robertson is the artist behind the images which make up Visual Elements. This is where the artist explains his interpretation of the element and the science behind the picture.


Natural Abundance

Where this element is most commonly found in nature.


Biological Roles

The elements role within the body of humans, animals and plants. Also functionality in medical advancements both today and years ago.


Appearance

The description of the element in its natural form.

Uses and properties

 
Image explanation

The two lines in a circle represents sodium, and is one of the element symbols developed by John Dalton in the 19th century. The orange glow is like the colour of sodium street lighting and the spiked ‘flash’ symbol reflects the element's high reactivity.

Appearance

Sodium is a soft metal that tarnishes within seconds of being exposed to the air. It also reacts vigorously with water.

Uses

Sodium is used as a heat exchanger in some nuclear reactors, and as a reagent in the chemicals industry. But sodium salts have more uses than the metal itself.


The most common compound of sodium is sodium chloride (common salt). It is added to food and used to de-ice roads in winter. It is also used as a feedstock for the chemical industry.


Sodium carbonate (washing soda) is also a useful sodium salt. It is used as a water softener.

Biological role
Sodium is essential to all living things, and humans have known this since prehistoric times. Our bodies contain about 100 grams, but we are constantly losing sodium in different ways so we need to replace it. We can get all the sodium we need from our food, without adding any extra. The average person eats about 10 grams of salt a day, but all we really need is about 3 grams. Any extra sodium may contribute to high blood pressure. Sodium is important for many different functions of the human body. For example, it helps cells to transmit nerve signals and regulate water levels in tissues and blood.
Natural abundance

Sodium is the sixth most common element on Earth, and makes up 2.6% of the Earth’s crust. The most common compound is sodium chloride. This very soluble salt has been leached into the oceans over the lifetime of the planet, but many salt beds or ‘lakes’ are found where ancient seas have evaporated. It is also found in many minerals including cryolite, zeolite and sodalite. 


Because sodium is so reactive it is never found as the metal in nature. Sodium metal is produced by electrolysis of dry molten sodium chloride.

 
Atomic data terminology

Atomic radius/non -bonded (Å)
Based on Van der Waals forces (where several isotopes exist, a value is presented for the most prevalent isotope). These values were calculated using a multitude of methods including crystallographic data, gas kinetic collision cross sections, critical densities, liquid state properties,for more details please refer to the CRC Handbook of Chemistry and Physics.


Electron affinity (kJ mol-1)
The energy released when an additional electron is attached to the neutral atom and a negative ion is formed (where several isotopes exist, a value is presented for the most prevalent isotope). *


Electronegativity (Pauling scale)
The degree to which an atom attracts electrons towards itself, expressed on a relative scale as a function bond dissociation energies, Ed in eV. χA - χB =(eV)-1/2sqrt(Ed(AB)-[Ed(AA)+Ed(BB)]/2), with χH set as 2.2 (where several isotopes exist, a value is presented for the most prevalent isotope).


1st Ionisation energy (kJ mol-1)
The minimum energy required to remove an electron from a neutral atom in its ground state (where several isotopes exist, a value is presented for the most prevalent isotope).


Covalent radius (Å)
The size of the atom within a covalent bond, given for typical oxidation number and coordination (where several isotopes exist, a value is presented for the most prevalent isotope). ***

Atomic data

 
Atomic radius, non-bonded (Å) 2.270 Covalent radius (Å) 1.6
Electron affinity (kJ mol-1) 52.848 Electronegativity
(Pauling scale)
0.930
Ionisation energies
(kJ mol-1)
 
1st
495.845
2nd
4562.440
3rd
6910.274
4th
9543.357
5th
13353.560
6th
16612.832
7th
20117.176
8th
25496.229
 
Bond enthalpies terminology

Covalent Bonds
The strengths of several common covalent bonds.

Bond enthalpies

 
Covalent bonds
Na–Na  72  kJ mol -1  
 

Mining/Sourcing Information

Data for this section of the data page has been provided by the British Geological Survey. To review the full report please click here or please look at their website here.


Key for numbers generated


Governance indicators

1 (low) = 0 to 2

2 (medium-low) = 3 to 4

3 (medium) = 5 to 6

4 (medium-high) = 7 to 8

5 (high) = 9


Reserve base distribution

1 (low) = 0 to 30 %

2 (medium-low) = 30 to 45 %

3 (medium) = 45 to 60 %

4 (medium-high) = 60 to 75 %

5 (high) = 75 %

(Where data are unavailable an arbitrary score of 2 was allocated. For example, Be, As, Na, S, In, Cl, Ca and Ge are allocated a score of 2 since reserve base information is unavailable. Reserve base data are also unavailable for coal; however, reserve data for 2008 are available from the Energy Information Administration (EIA).)


Production Concentration

1 (low) = 0 to 30 %

2 (medium-low) = 30 to 45 %

3 (medium) = 45 to 60 %

4 (medium-high) = 60 to 75 %

5 (high) = 75 %


Crustal Abundance

1 (low) = 100 to 1000 ppm

2 (medium-low) =10 to 100 ppm

3 (medium) = 1 to 10 ppm

4 (medium-high) = 0.1 to 1 ppm

5 (high) = 0.1 ppm

(Where data are unavailable an arbitrary score of 2 was allocated. For example, He is allocated a score of 2 since crustal abundance data is unavailable.)


Explanations for terminology


Crustal Abundance (ppm)

The abundance of an element in the Earth's crust in parts-per-million (ppm) i.e. The number of atoms of this element per 1 million atoms of crust.


Sourced

The country with the largest reserve base.


Reserve Base Distribution

This is a measure of the spread of future supplies, recording the percentage of a known resource likely to be available in the intermediate future (reserve base) located in the top three countries.


Production Concentrations

This reports the percentage of an element produced in the top three countries. The higher the value, the larger risk there is to supply.


Total Governance Factor

The World Bank produces a global percentile rank of political stability. The scoring system is given below, and the values for all three production countries were summed.


Relative Supply Risk Index

The Crustal Abundance, Reserve Base Distribution, Production Concentration and Governance Factor scores are summed and then divided by 2, to provide an overall Relative Supply Risk Index.

Supply risk

 
Scarcity factor 4.0
Country with largest reserve base n/a
Crustal abundance (ppm) 23600
Leading producer China
Reserve base distribution (%) n/a
Production concentration (%) 24.30
Total governance factor(production) 8
Top 3 countries (mined)
  • 1) n/a
Top 3 countries (production)
  • 1) China
  • 2) India
  • 3) USA
 

Oxidation states and isotopes


Key for Isotopes


Half Life
  y years
  d days
  h hours
  m minutes
  s seconds
Mode of decay
  α alpha particle emission
  β negative beta (electron) emission
  β+ positron emission
  EC orbital electron capture
  sf spontaneous fission
  ββ double beta emission
  ECEC double orbital electron capture

Terminology


Common Oxidation states
The oxidation state of an atom is a measure of the degree of oxidation of an atom. It is defined as being the charge that an atom would have if all bonds were ionic. Free atoms have an oxidation state of 0, and the sum of oxidation numbers within a substance must equal the overall charge.


Important Oxidation states
The most common oxidation states of an element in its compounds.


Isotopes
Elements are defined by the number of protons in its centre (nucleus), whilst the number of neutrons present can vary. The variations in the number of neutrons will create elements of different mass which are known as isotopes.

Oxidation states and isotopes

 
Common oxidation states 1
Isotopes Isotope Atomic mass Natural abundance (%) Half life Mode of decay
  23Na 22.99 100
 

Pressure and temperature - advanced terminology


Molar Heat Capacity (J mol-1 K-1)

Molar heat capacity is the energy required to heat a mole of a substance by 1 K.


Young's modulus (GPa)

Young's modulus is a measure of the stiffness of a substance, that is, it provides a measure of how difficult it is to extend a material, with a value given by the ratio of tensile strength to tensile strain.


Shear modulus (GPa)

The shear modulus of a material is a measure of how difficult it is to deform a material, and is given by the ratio of the shear stress to the shear strain.


Bulk modulus (GPa)

The bulk modulus is a measure of how difficult to compress a substance. Given by the ratio of the pressure on a body to the fractional decrease in volume.


Vapour Pressure (Pa)

Vapour pressure is the measure of the propensity of a substance to evaporate. It is defined as the equilibrium pressure exerted by the gas produced above a substance in a closed system.

Pressure and temperature data – advanced

 
Molar heat capacity
(J mol-1 K-1)
28.23 Young's modulus (GPa) Unknown
Shear modulus (GPa) Unknown Bulk modulus (GPa) 6.3
Vapour pressure  
Temperature (K)
400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
Pressure (Pa)
1.85
x 10-4
5.6 - - - - - - - - -
  Help text not available for this section currently

History

Salt (sodium chloride, NaCl) and soda (sodium carbonate, Na2CO3) had been known since prehistoric times, the former used as a flavouring and preservative, and the latter for glass manufacture. Salt came from seawater, while soda came from the Natron Valley in Egypt or from the ash of certain plants. Their composition was debated by early chemists and the solution finally came from the Royal Institution in London in October 1807 where Humphry Davy exposed caustic soda (sodium hydroxide, NaOH) to an electric current and obtained globules of sodium metal, just as he had previously done for potassium, although he needed to use a stronger current.


The following year, Louis-Josef Gay-Lussac and Louis-Jacques Thénard obtained sodium by heating to red heat a mixture of caustic soda and iron filings.

  Help text not available for this section currently

Podcasts

Listen to Sodium Podcast
Transcript :

Chemistry in its element - sodium


(Promo) 

You're listening to Chemistry in its element brought to you by Chemistry World, the magazine of the Royal Society of Chemistry 

(End promo) 

Meera Senthilingam 

This week an essential element with a split personality. Here's David Read.

David Read

Sodium, like most elements in the periodic table could be said to have a dual personality. On one side it is an essential nutrient for most living things, and yet, due to its reactive nature is also capable of wreaking havoc if you happen to combine it with something you shouldn't.

As such sodium is found naturally only in compounds and never as the free element. Even so it is highly abundant, accounting for around 2.6   per cent of the earths crust by weight. Its most common compounds include dissolved sodium chloride (or table salt), its solid form, halite and as a charge balancing cation in zeolites.

Aside from being an essential nutrient, the story of man and sodium is said to begin all the way back in the time of the Pharaohs in Ancient Egypt, with the first recorded mention of a sodium compound in the form of hieroglyphics. It is difficult to describe a pictogram through speech but imagine a squiggly line over the top of a hollow eye-shape, over the top of a semicircle, with a left-facing vulture image next to them all. This pictogram meant divine or pure and its name is the root of the word natron, which was used to refer to washing soda, or sodium carbonate decahydrate, as we would know it today. Sodium carbonate was used in soap, and also, in the process of mummification thanks to its water absorbing and bacteria killing pH control properties.

In medieval Europe, however, sodium carbonate was also used as a cure for headaches, and so took the name sodanum, from the Arabic suda, meaning headache. It was this terminology that inspired Sir Humphrey Davy to call the element sodium when he first isolated it by passing an electric current through caustic soda, or sodium hydroxide, in 1807. This process is known as electrolysis and using it Davy went on to isolate elemental potassium, calcium, magnesium and barium by a   very similar method.

Chemistry teachers often confuse children when they tell them about chemical symbols. Whilst ones like H, N, C and O all seem perfectly logical, abbreviating sodium to Na seems counterintuitive at first. However, if we consider the word natron, we can see where the abbreviated form came from. 

When isolated in metallic form, silvery white sodium is a violent element, immediately oxidising upon contact with air, and violently producing hydrogen gas which may burst into flame when brought into contact with water. It is one of the highly reactive group one elements that are named the alkali metals. 

Like the other alkali metals, it has a very distinctive flame test - a bright orange colour, from the D-line emission. This is something you will have seen in all built up areas in the form of street lamps, which use sodium to produce the unnatural yellow light bathing our streets. This effect was first noted in 1860 by Kirchoff and Bunsen of Bunsen Burner fame.

Almost all young Chemists will have done a flame test at some point, and sodium chloride is a popular choice. Unfortunately, the intensity of the colour is such that if any of the compound is spilled into the Bunsen burner, it is cursed to burn with a blue and orange speckled flame seemingly forever.   The reaction of sodium with water is a favourite demonstration, and clips of it abound on the internet. 

Sodium and its compounds have applications so diverse it would be impossible to mention them all here, a couple of examples include the fact that sodium is used to cool nuclear reactors, since it won't boil as water would at the high temperatures that are reached.

Sodium hydroxide can be used to remove sulfur from petrol and diesel, although the toxic soup of by-products that is formed has led to the process being outlawed in most countries.   Sodium hydroxide is also used in biodiesel manufacture, and as a key component in products that remove blockages from drains.

Baking soda actually contains sodium (it's in the name!) and its chemical name is sodium bicarbonate, where I'm sure you've come across it in baking or cooking where it undergoes thermal decomposition at above 70°C to release carbon dioxide - which then makes your dough rise.

It is as an ion, however, that sodium really becomes important. An average human being has to take in around two grams of sodium a day - and virtually all of this will be taken in the form of salt in the diet. Sodium ions are used to build up electrical gradients in the firing of neurons in the brain. This involves sodium (and its big brother potassium) diffusing through cell membranes. Sodium diffuses in and is pumped back out, while potassium does the reverse journey. This can take up a huge amount of the body's energy - sometimes as much as 40 per cent.

I'd like to end with a brief story which highlights the dual personality of sodium. One man bought three and a half pounds of sodium metal from the internet and spent the evening reacting it with water in various shapes and sizes whilst he and his friends watched from a safe distance. The party was apparently a success, but he doesn't suggest hosting your own. The following day when the host came outside to check the area where he detonated the sodium was clear, he noticed that it was covered in swarms of yellow butterflies. After doing some research, he found that these butterflies had an interesting habit. The males search for sodium and gradually collect it, presenting it to their mates later as a ritual. So, that sums up the two faces of sodium. Its violent reactive nature contrasted with its use by amorous butterflies.

Meera Senthilingam 

That was Southampton university's David Read with the two faced chemistry of sodium. Now next week, the chemical equivalent of train spotting.

Brian Clegg

It's easy to accuse the scientists who produce new, very heavy elements of being chemistry's train spotters. Just as train spotters spend hours watching for a particular locomotive so they can underline it in their book, it may seem that these chemists laboriously produce an atom or two of a superheavy element as an exercise in ticking the box. But element 114 has provided more than one surprise, showing why such elements are well worth investigating.

Meera Senthilingam 

And to find out why element 114 is worth the effort join Brian Clegg in next week's Chemistry in its element.

(Promo) 

Chemistry in its element is brought to you by the Royal Society of Chemistry and produced by thenakedscientists dot com. There's more information and other episodes of Chemistry in its element on our website at chemistryworld dot org forward slash elements. 

(End promo) 

  Help text not available for this section currently
  Help Text

Resources

Description :
Many elements react with oxygen on heating. These reactions and the properties of their products illustrate the periodic nature of the elements.
Description :
A series of short, fun videos exploring the chemistry of the alkali metals, taken from a lecture by Dr. Peter Wothers at the University of Cambridge.
Description :
A series of short, fun videos exploring the chemistry of the alkali metals, taken from a lecture by Dr. Peter Wothers at the University of Cambridge.
Description :
This demonstration experiment can be used to show the flame colours given by alkali metal, alkaline earth metal, and other metal salts.
Description :
Using laboratory tests identify sodium sulphate, sodium sulphite, sodium thiosulphate, sodium metabisulphite and sodium persulphate
Description :
In this experiment sodium hydroxide is neutralised with hydrochloric acid to produce the soluble salt sodium chloride in solution. This solution is then concentrated and crystallised to produce sodiu...
 

Terms & Conditions


Images © Murray Robertson 1999-2011
Text © The Royal Society of Chemistry 1999-2011

Welcome to "A Visual Interpretation of The Table of Elements", the most striking version of the periodic table on the web. This Site has been carefully prepared for your visit, and we ask you to honour and agree to the following terms and conditions when using this Site.


Copyright of and ownership in the Images reside with Murray Robertson. The RSC has been granted the sole and exclusive right and licence to produce, publish and further license the Images.


The RSC maintains this Site for your information, education, communication, and personal entertainment. You may browse, download or print out one copy of the material displayed on the Site for your personal, non-commercial, non-public use, but you must retain all copyright and other proprietary notices contained on the materials. You may not further copy, alter, distribute or otherwise use any of the materials from this Site without the advance, written consent of the RSC. The images may not be posted on any website, shared in any disc library, image storage mechanism, network system or similar arrangement. Pornographic, defamatory, libellous, scandalous, fraudulent, immoral, infringing or otherwise unlawful use of the Images is, of course, prohibited.


If you wish to use the Images in a manner not permitted by these terms and conditions please contact the Publishing Services Department by email. If you are in any doubt, please ask.


Commercial use of the Images will be charged at a rate based on the particular use, prices on application. In such cases we would ask you to sign a Visual Elements licence agreement, tailored to the specific use you propose.


The RSC makes no representations whatsoever about the suitability of the information contained in the documents and related graphics published on this Site for any purpose. All such documents and related graphics are provided "as is" without any representation or endorsement made and warranty of any kind, whether expressed or implied, including but not limited to the implied warranties of fitness for a particular purpose, non-infringement, compatibility, security and accuracy.


In no event shall the RSC be liable for any damages including, without limitation, indirect or consequential damages, or any damages whatsoever arising from use or loss of use, data or profits, whether in action of contract, negligence or other tortious action, arising out of or in connection with the use of the material available from this Site. Nor shall the RSC be in any event liable for any damage to your computer equipment or software which may occur on account of your access to or use of the Site, or your downloading of materials, data, text, software, or images from the Site, whether caused by a virus, bug or otherwise.


We hope that you enjoy your visit to this Site. We welcome your feedback.

References

 
Images:  Visual Elements © Murray Robertson 2011
Mining and Sourcing data:  British Geological Survey – natural environment research council.
Text:  John Emsley Nature’s Building Blocks: An A-Z Guide to the Elements, Oxford University Press, 2nd Edition, 2011.
Additional information for platinum, gold, neodymium and dysprosium obtained from Material Value Consultancy Ltd www.matvalue.com
Data: CRC Handbook of Chemistry and Physics, CRC Press, 92nd Edition, 2011.
G. W. C. Kaye and T. H. Laby Tables of Physical and Chemical Constants, Longman, 16th Edition, 1995.
Members of the RSC can access these books through our library.