Periodic Table > Vanadium
 

Terminology


Allotropes
Some elements exist in several different structural forms, these are called allotropes.


For more information on Murray Robertson’s image see Uses and properties facts below.

 

Fact box terminology


Group
Elements appear in columns or ‘groups’ in the periodic table. Members of a group typically have similar properties and electron configurations in their outer shell.


Period
Elements are laid out into rows or ‘periods’ so that similar chemical behaviour is observed in columns.


Block
Elements are organised into blocks by the orbital type in which the outer electrons are found. These blocks are named for the characteristic spectra they produce: sharp, principal, diffuse, and fundamental.


Atomic Number
The number of protons in the nucleus.


Atomic Radius/non -bonded (Å)
based on Van der Waals forces (where several isotopes exist, a value is presented for the most prevalent isotope). These values were calculated using a multitude of methods including crystallographic data, gas kinetic collision cross sections, critical densities, liquid state properties, for more details please refer to the CRC Handbook of Chemistry and Physics.


Electron Configuration
The arrangements of electrons above the last (closed shell) noble gas.


Isotopes
Elements are defined by the number of protons in its centre (nucleus), whilst the number of neutrons present can vary. The variations in the number of neutrons will create elements of different mass which are known as isotopes.


Melting Point (oC)
The temperature at which the solid-liquid phase change occurs.


Melting Point (K)
The temperature at which the solid-liquid phase change occurs.


Melting Point (oF)
The temperature at which the solid-liquid phase change occurs.


Boiling Point (oC)
The temperature at which the liquid-gas phase change occurs.


Boiling Point (K)
The temperature at which the liquid-gas phase change occurs.


Boiling Point (oF)
The temperature at which the liquid-gas phase change occurs.


Sublimation
Elements that do not possess a liquid phase at atmospheric pressure (1 atm) are described as going through a sublimation process.


Density (kgm-3)
Density is the weight of a substance that would fill 1 m3 (at 298 K unless otherwise stated).


Relative Atomic Mass
The mass of an atom relative to that of Carbon-12. This is approximately the sum of the number of protons and neutrons in the nucleus. Where more than one isotope exists the value given is the abundance weighted average.


Key Isotopes (% abundance)
An element must by definition have a fixed number of protons in its nucleus, and as such has a fixed atomic number, however variants of an element can exist with differing numbers of neutrons, and hence a different atomic masses (e.g. 12C has 6 protons and 6 neutrons and 13C has 6 protons and 7 neutrons).


CAS number
The Chemical Abstracts Service registry number is a unique identifier of a particular chemical, designed to prevent confusion arising from different languages and naming systems (where several isotopes exist, a value is presented for the most prevalent isotope).

Fact box

 
Group Melting point 1910 oC, 3470 oF, 2183.15 K 
Period Boiling point 3407 oC, 6164.6 oF, 3680.15 K 
Block Density (kg m-3) 6090 
Atomic number 23  Relative atomic mass 50.942  
State at room temperature Solid  Key isotopes 51
Electron configuration [Ar] 3d34s2  CAS number 7440-62-2 
ChemSpider ID 22426 ChemSpider is a free chemical structure database
 

Uses and properties terminology


Image Explanation

Murray Robertson is the artist behind the images which make up Visual Elements. This is where the artist explains his interpretation of the element and the science behind the picture.


Natural Abundance

Where this element is most commonly found in nature.


Biological Roles

The elements role within the body of humans, animals and plants. Also functionality in medical advancements both today and years ago.


Appearance

The description of the element in its natural form.

Uses and properties

 
Image explanation

The image features a symbol based on an 8th century figurine of the Scandinavian goddess Freya set against a text from an Icelandic saga written in the 13th century.

Appearance

A silvery metal that resists corrosion.

Uses

About 80% of the vanadium produced is used as a steel additive. In this form it produces one of the toughest alloys for armour plate, axles, piston rods and crankshafts. Less than 1% of vanadium and as little chromium make steel shock- and vibration-resistant. Vanadium(V) oxide is used in ceramics, as a catalyst and in producing superconducting magnets.

Biological role

Vanadium is essential to some species, including humans, although we require very little - less than the 0.04 milligrams, which we take in each day. In some compounds vanadium can become toxic.

Natural abundance

Vanadium is found in about 65 different minerals including vanadinite, carnotite and patronite, and also in phosphate rock, certain iron ores and some crude oils in the form of organic complexes. Vanadium of high purity can be obtained by the reduction of vanadium(III) chloride with magnesium. Much of the vanadium metal now being produced is made by calcium reduction of vanadium(V) oxide in a pressure vessel.

 
Atomic data terminology

Atomic radius/non -bonded (Å)
Based on Van der Waals forces (where several isotopes exist, a value is presented for the most prevalent isotope). These values were calculated using a multitude of methods including crystallographic data, gas kinetic collision cross sections, critical densities, liquid state properties,for more details please refer to the CRC Handbook of Chemistry and Physics.


Electron affinity (kJ mol-1)
The energy released when an additional electron is attached to the neutral atom and a negative ion is formed (where several isotopes exist, a value is presented for the most prevalent isotope). *


Electronegativity (Pauling scale)
The degree to which an atom attracts electrons towards itself, expressed on a relative scale as a function bond dissociation energies, Ed in eV. χA - χB =(eV)-1/2sqrt(Ed(AB)-[Ed(AA)+Ed(BB)]/2), with χH set as 2.2 (where several isotopes exist, a value is presented for the most prevalent isotope).


1st Ionisation energy (kJ mol-1)
The minimum energy required to remove an electron from a neutral atom in its ground state (where several isotopes exist, a value is presented for the most prevalent isotope).


Covalent radius (Å)
The size of the atom within a covalent bond, given for typical oxidation number and coordination (where several isotopes exist, a value is presented for the most prevalent isotope). ***

Atomic data

 
Atomic radius, non-bonded (Å) 2.070 Covalent radius (Å) 1.44
Electron affinity (kJ mol-1) 50.637 Electronegativity
(Pauling scale)
1.630
Ionisation energies
(kJ mol-1)
 
1st
650.909
2nd
1410.421
3rd
2828.079
4th
4506.730
5th
6298.722
6th
12362.656
7th
14530.680
8th
16730.544
 

Mining/Sourcing Information

Data for this section of the data page has been provided by the British Geological Survey. To review the full report please click here or please look at their website here.


Key for numbers generated


Governance indicators

1 (low) = 0 to 2

2 (medium-low) = 3 to 4

3 (medium) = 5 to 6

4 (medium-high) = 7 to 8

5 (high) = 9


Reserve base distribution

1 (low) = 0 to 30 %

2 (medium-low) = 30 to 45 %

3 (medium) = 45 to 60 %

4 (medium-high) = 60 to 75 %

5 (high) = 75 %

(Where data are unavailable an arbitrary score of 2 was allocated. For example, Be, As, Na, S, In, Cl, Ca and Ge are allocated a score of 2 since reserve base information is unavailable. Reserve base data are also unavailable for coal; however, reserve data for 2008 are available from the Energy Information Administration (EIA).)


Production Concentration

1 (low) = 0 to 30 %

2 (medium-low) = 30 to 45 %

3 (medium) = 45 to 60 %

4 (medium-high) = 60 to 75 %

5 (high) = 75 %


Crustal Abundance

1 (low) = 100 to 1000 ppm

2 (medium-low) =10 to 100 ppm

3 (medium) = 1 to 10 ppm

4 (medium-high) = 0.1 to 1 ppm

5 (high) = 0.1 ppm

(Where data are unavailable an arbitrary score of 2 was allocated. For example, He is allocated a score of 2 since crustal abundance data is unavailable.)


Explanations for terminology


Crustal Abundance (ppm)

The abundance of an element in the Earth's crust in parts-per-million (ppm) i.e. The number of atoms of this element per 1 million atoms of crust.


Sourced

The country with the largest reserve base.


Reserve Base Distribution

This is a measure of the spread of future supplies, recording the percentage of a known resource likely to be available in the intermediate future (reserve base) located in the top three countries.


Production Concentrations

This reports the percentage of an element produced in the top three countries. The higher the value, the larger risk there is to supply.


Total Governance Factor

The World Bank produces a global percentile rank of political stability. The scoring system is given below, and the values for all three production countries were summed.


Relative Supply Risk Index

The Crustal Abundance, Reserve Base Distribution, Production Concentration and Governance Factor scores are summed and then divided by 2, to provide an overall Relative Supply Risk Index.

Supply risk

 
Scarcity factor 4.5
Country with largest reserve base China
Crustal abundance (ppm) 138
Leading producer Russia
Reserve base distribution (%) 36.80
Production concentration (%) 37.80
Total governance factor(production) 8
Top 3 countries (mined)
  • 1) China
  • 2) South Africa
  • 3) Russia
Top 3 countries (production)
  • 1) Russia
  • 2) China
  • 3) South Africa
 

Oxidation states and isotopes


Key for Isotopes


Half Life
  y years
  d days
  h hours
  m minutes
  s seconds
Mode of decay
  α alpha particle emission
  β negative beta (electron) emission
  β+ positron emission
  EC orbital electron capture
  sf spontaneous fission
  ββ double beta emission
  ECEC double orbital electron capture

Terminology


Common Oxidation states
The oxidation state of an atom is a measure of the degree of oxidation of an atom. It is defined as being the charge that an atom would have if all bonds were ionic. Free atoms have an oxidation state of 0, and the sum of oxidation numbers within a substance must equal the overall charge.


Important Oxidation states
The most common oxidation states of an element in its compounds.


Isotopes
Elements are defined by the number of protons in its centre (nucleus), whilst the number of neutrons present can vary. The variations in the number of neutrons will create elements of different mass which are known as isotopes.

Oxidation states and isotopes

 
Common oxidation states 5, 4, 3, 2, 0
Isotopes Isotope Atomic mass Natural abundance (%) Half life Mode of decay
  50V 49.947 0.25 1.4 x 1017 EC 
  51V 50.944 99.75
 

Pressure and temperature - advanced terminology


Molar Heat Capacity (J mol-1 K-1)

Molar heat capacity is the energy required to heat a mole of a substance by 1 K.


Young's modulus (GPa)

Young's modulus is a measure of the stiffness of a substance, that is, it provides a measure of how difficult it is to extend a material, with a value given by the ratio of tensile strength to tensile strain.


Shear modulus (GPa)

The shear modulus of a material is a measure of how difficult it is to deform a material, and is given by the ratio of the shear stress to the shear strain.


Bulk modulus (GPa)

The bulk modulus is a measure of how difficult to compress a substance. Given by the ratio of the pressure on a body to the fractional decrease in volume.


Vapour Pressure (Pa)

Vapour pressure is the measure of the propensity of a substance to evaporate. It is defined as the equilibrium pressure exerted by the gas produced above a substance in a closed system.

Pressure and temperature data – advanced

 
Molar heat capacity
(J mol-1 K-1)
24.89 Young's modulus (GPa) 127.6
Shear modulus (GPa) 46.7 Bulk modulus (GPa) Unknown
Vapour pressure  
Temperature (K)
400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
Pressure (Pa)
- - - - 2.79
x 10-10
4.35
x 10-7
1.07
x 10-4
7.69
x 10-3
0.23 3.68 32.6
  Help text not available for this section currently

History

Vanadium was discovered twice. The first time was in 1801 by Andrés Manuel del Rio who was Professor of Mineralogy in Mexico City. He found it in a specimen of vanadite, Pb5(VO4)3Cl and sent a sample to Paris. However, French chemists concluded that it was a chromium mineral.


The second time vanadium was discovered was in 1831 by the Swedish chemist Nil Gabriel Selfström at Stockholm. He separated it from a sample of cast iron made from ore that had been mined at Småland. He was able to show that it was a new element, and in so doing he beat a rival chemist, Friedrich Wöhler, to the discovery He was also working another vanadium mineral from Zimapan.


Pure vanadium was produced by Henry Roscoe at Manchester, in 1869, and he showed that previous samples of the metal were really vanadium nitride (VN).

  Help text not available for this section currently

Podcasts

Listen to Vanadium Podcast
Transcript :

Chemistry in its Element - Vanadium


  (Promo)

 

You're listening to Chemistry in its element brought to you by Chemistry World, the magazine of the Royal Society of Chemistry

(End promo)

 

Chris Smith

Hello, this week to an element with a role in body building and that's not just of the human kind.   This is the stuff that was essential in helping to get the Model T Fords to first roll off of the production line because it strengthens steel.   It's also the catalytic power behind the production of sulphuric acid and its named after the Norse God of beauty, love and fertility.   And to reveal her identify here's Chris Orvig.

Chris Orvig

Vanadium, a first row transition metal in the Periodic Table, is an element of mystery.   Not only was it first transported two hundred years ago from Mexico, and lost in a shipwreck along with all of the relevant lab notes by the great German scientist Baron von Humboldt, but it required discovery several times by such famous names as Wöhler, Berzelius and del Rio (who was actually talked out of his claim in 1805).   Final and convincing verification came from the Swede Nils Sefström out of an oxide in iron ores in 1831.   Vanadium metal was first prepared in the 1860s by English chemist Henry Enfield Roscoe.   The place of vanadium as a trace element necessary for life processes has been just as tortuously argued and hotly debated through most of the last century - doubtless many organisms and other mammals require it.but do humans?   A deficiency condition in humans has never been defined, but vanadium does have a medicinally relevant role as a potential treatment for diabetes mellitus, but more on this later.

 

Vanadium is the fifth most abundant transition metal in the earth's crust, often found with titanium and iron in their ores, and significant concentrations are found in certain coal and oil deposits, such as crude and shale oils.   In its metallic state, it strengthens stainless steel and some superconducting alloys, while in its numerous ionic states it has been used spectroscopically to probe enzyme active sites and is found in both naturally occurring catalysts in seaweed and lab catalysts for oxidation chemistry.   Silver vanadium oxides have a role in battery chemistry.   The first large scale industrial use of vanadium metal was a century ago in the steels used to fashion the chassis of the Ford Model T car, and steel remains the main use of vanadium metal.    Because vanadium is a light transition metal, not a "heavy metal" as often incorrectly claimed in the toxicology literature, vanadium metal contributes reduced weight to high tensile strength steels. The compound of greatest commercial importance is vanadium pentoxide, V2O5, which is used as a catalyst for the production of sulfuric acid, the bulk commodity chemical of greatest world production.

 

Tremendous versatility for an element named by Sefström for Vanadis (also known as Freyja) the Norse goddess of beauty, love and fertility.   All seven oxidation states from -1 to +5 are known in inorganic chemistry, and give rise to the many beautiful colours often associated with transition metal compounds.   Its multiple oxidation states, ready hydrolysis and polymerisation bestow upon vanadium a chemistry far richer and more complex than that of many elements, formation of aggregated oxyanions and sulfur complexes being just two examples.   The highest three oxidation states (III, IV and V) are of significant importance in water and are the oxidation states found in the more than one hundred known vanadium minerals.   The tar sands of Alberta in western Canada present a huge untapped reservoir of vanadium.

 

Certain marine ascidians and sea squirts concentrate vanadium up to one million fold from surrounding seawater, while mushroom species such as amanita muscaria concentrate vanadium(IV); in both cases the reasons have yet to be elucidated.   Biology exploits vanadium's oxidation state promiscuity in the vanadium-dependent haloperoxidases, which were discovered in marine brown algae and seaweed in the 1980s; these are surprisingly robust marine enzymes that oxidise substrates using peroxide as an electron acceptor.   There is even a vanadium nitrogenase - a vanadium nitrogen-reducing alternative to the iron-molybdenum enzyme that reduces dinitrogen to ammonia in the root-nodules of many plants.

 

Most conveniently for studies of vanadium(V) chemistry (that which is important in oxidation catalysis), naturally occurring vanadium is mono-isotopic - vanadium-51 has a nuclear spin of 7/2 which is useful for NMR spectroscopy.   Vanadium(IV) has one   unpaired 3d electron that, coupled with the nuclear spin, is exquisitely diagnostic in EPR spectroscopy - the vanadyl ion (VO2+) is a sensitive spectroscopic probe that has been used to elucidate enzyme active site structure, as well as catalytic activity. 

 

Vanadium has significant effects on cellular growth, redox and signaling processes, as well as enzyme function.   Vanadyl sulphate is a very controversial dietary supplement, popular in body-building and can often be purchased in gym shops where allowed by law.   The vanadate anion is a phosphate mimic that has been used as a probe of the enzymes that transfer phosphates in cell signaling - the phosphatases and kinases.   Not surprisingly vanadium shows many interesting biological properties resulting from this activity, not the least of which is its ability to enhance, but not mimic, the action of insulin, the key hormone in diabetes mellitus.   This property was first shown in France in three diabetic humans and published in 1899 in La Presse Médicale.   Vanadium does not act in the complete absence of insulin - hence it is an enhancer rather than a mimic of insulin.   Significant efforts over the last 25 years, since John McNeill of the University of British Columbia showed that vanadate was effective in a diabetic rat model, have led to a number of vanadium compounds now being clinically investigated in humans as potential agents for the treatment of diabetes.

Chris Smith

A colourful transition metal with a sweet side.   That was chemist Chris Orvig and he's based at the University of British Columbia.   Next week you'll have to be sure to hold your nose.

 

Bernard J Bulkin

Butyl seleno mercaptan is the essential ingredient of skunk smell, and is certainly a contender for the title of the worst smelling compound.   Once you have smelt it you will never forget it, nor underestimate the impact that this interesting element can have.

 

Chris Smith

 

Yuk, but thankfully you can catch up with the whole story of Selenium and without having to have an unforgettable encounter with a skunk and that's all on next week's Chemistry in its Element.   I'm Chris Smith, thank you for listening and goodbye.

 

(Promo)

 

Chemistry in its elementis brought to you by the Royal Society of Chemistry and produced by thenakedscientists dot com. There's more information and other episodes of Chemistry in its element on our website at chemistryworld dot org forward slash elements.   

 

(End promo)

  Help text not available for this section currently
  Help Text

Resources

Description :
Assessment for Learning is an effective way of actively involving students in their learning. This is a series of plans based around chemistry topics.
Description :
When concentrated hydrochloric acid is added to a very dilute solution of copper sulfate, the pale blue solution slowly turns yellow-green on the formation of a copper chloride complex. When concentr...
Description :
The purpose of this experiment is to observe and interpret some of the chemistry of three first row transition elements and to compare them with a typical s-block element.
Description :
The Periodic Table allows chemists to see similarities and trends in the properties of chemical elements. This experiment illustrates some properties of the common transition elements and their compo...
Description :
In this experiment you will be looking at a group of transition elements chromium, molybdenum and tungsten.
Description :
The purpose of this experiment is to examine some of the solution chemistry of the transition elements.
 

Terms & Conditions


Images © Murray Robertson 1999-2011
Text © The Royal Society of Chemistry 1999-2011

Welcome to "A Visual Interpretation of The Table of Elements", the most striking version of the periodic table on the web. This Site has been carefully prepared for your visit, and we ask you to honour and agree to the following terms and conditions when using this Site.


Copyright of and ownership in the Images reside with Murray Robertson. The RSC has been granted the sole and exclusive right and licence to produce, publish and further license the Images.


The RSC maintains this Site for your information, education, communication, and personal entertainment. You may browse, download or print out one copy of the material displayed on the Site for your personal, non-commercial, non-public use, but you must retain all copyright and other proprietary notices contained on the materials. You may not further copy, alter, distribute or otherwise use any of the materials from this Site without the advance, written consent of the RSC. The images may not be posted on any website, shared in any disc library, image storage mechanism, network system or similar arrangement. Pornographic, defamatory, libellous, scandalous, fraudulent, immoral, infringing or otherwise unlawful use of the Images is, of course, prohibited.


If you wish to use the Images in a manner not permitted by these terms and conditions please contact the Publishing Services Department by email. If you are in any doubt, please ask.


Commercial use of the Images will be charged at a rate based on the particular use, prices on application. In such cases we would ask you to sign a Visual Elements licence agreement, tailored to the specific use you propose.


The RSC makes no representations whatsoever about the suitability of the information contained in the documents and related graphics published on this Site for any purpose. All such documents and related graphics are provided "as is" without any representation or endorsement made and warranty of any kind, whether expressed or implied, including but not limited to the implied warranties of fitness for a particular purpose, non-infringement, compatibility, security and accuracy.


In no event shall the RSC be liable for any damages including, without limitation, indirect or consequential damages, or any damages whatsoever arising from use or loss of use, data or profits, whether in action of contract, negligence or other tortious action, arising out of or in connection with the use of the material available from this Site. Nor shall the RSC be in any event liable for any damage to your computer equipment or software which may occur on account of your access to or use of the Site, or your downloading of materials, data, text, software, or images from the Site, whether caused by a virus, bug or otherwise.


We hope that you enjoy your visit to this Site. We welcome your feedback.

References

 
Images:  Visual Elements © Murray Robertson 2011
Mining and Sourcing data:  British Geological Survey – natural environment research council.
Text:  John Emsley Nature’s Building Blocks: An A-Z Guide to the Elements, Oxford University Press, 2nd Edition, 2011.
Additional information for platinum, gold, neodymium and dysprosium obtained from Material Value Consultancy Ltd www.matvalue.com
Data: CRC Handbook of Chemistry and Physics, CRC Press, 92nd Edition, 2011.
G. W. C. Kaye and T. H. Laby Tables of Physical and Chemical Constants, Longman, 16th Edition, 1995.
Members of the RSC can access these books through our library.