Periodic Table > Ytterbium
 

Terminology


Allotropes
Some elements exist in several different structural forms, these are called allotropes.


For more information on Murray Robertson’s image see Uses and properties facts below.

 

Fact box terminology


Group
Elements appear in columns or ‘groups’ in the periodic table. Members of a group typically have similar properties and electron configurations in their outer shell.


Period
Elements are laid out into rows or ‘periods’ so that similar chemical behaviour is observed in columns.


Block
Elements are organised into blocks by the orbital type in which the outer electrons are found. These blocks are named for the characteristic spectra they produce: sharp, principal, diffuse, and fundamental.


Atomic Number
The number of protons in the nucleus.


Atomic Radius/non -bonded (Å)
based on Van der Waals forces (where several isotopes exist, a value is presented for the most prevalent isotope). These values were calculated using a multitude of methods including crystallographic data, gas kinetic collision cross sections, critical densities, liquid state properties, for more details please refer to the CRC Handbook of Chemistry and Physics.


Electron Configuration
The arrangements of electrons above the last (closed shell) noble gas.


Isotopes
Elements are defined by the number of protons in its centre (nucleus), whilst the number of neutrons present can vary. The variations in the number of neutrons will create elements of different mass which are known as isotopes.


Melting Point (oC)
The temperature at which the solid-liquid phase change occurs.


Melting Point (K)
The temperature at which the solid-liquid phase change occurs.


Melting Point (oF)
The temperature at which the solid-liquid phase change occurs.


Boiling Point (oC)
The temperature at which the liquid-gas phase change occurs.


Boiling Point (K)
The temperature at which the liquid-gas phase change occurs.


Boiling Point (oF)
The temperature at which the liquid-gas phase change occurs.


Sublimation
Elements that do not possess a liquid phase at atmospheric pressure (1 atm) are described as going through a sublimation process.


Density (g cm-3)
Density is the mass of a substance that would fill 1 cm3 at room temperature.


Relative Atomic Mass
The mass of an atom relative to that of Carbon-12. This is approximately the sum of the number of protons and neutrons in the nucleus. Where more than one isotope exists the value given is the abundance weighted average.


Key Isotopes (% abundance)
An element must by definition have a fixed number of protons in its nucleus, and as such has a fixed atomic number, however variants of an element can exist with differing numbers of neutrons, and hence a different atomic masses (e.g. 12C has 6 protons and 6 neutrons and 13C has 6 protons and 7 neutrons).


CAS number
The Chemical Abstracts Service registry number is a unique identifier of a particular chemical, designed to prevent confusion arising from different languages and naming systems (where several isotopes exist, a value is presented for the most prevalent isotope).

Fact box

 
Group Lanthanides  Melting point 824 oC, 1515.2 oF, 1097.15 K 
Period Boiling point 1196 oC, 2184.8 oF, 1469.15 K 
Block Density (g cm-3) 6.9 
Atomic number 70  Relative atomic mass 173.04  
State at room temperature Solid  Key isotopes 172Yb, 173Yb, 174Yb 
Electron configuration [Xe] 4f146s2  CAS number 7440-64-4 
ChemSpider ID 22428 ChemSpider is a free chemical structure database
 

Uses and properties terminology


Image Explanation

Murray Robertson is the artist behind the images which make up Visual Elements. This is where the artist explains his interpretation of the element and the science behind the picture.


Natural Abundance

Where this element is most commonly found in nature.


Biological Roles

The elements role within the body of humans, animals and plants. Also functionality in medical advancements both today and years ago.


Appearance

The description of the element in its natural form.

Uses and properties

 
Image explanation
The image is based on ancient Swedish rock carvings.
Appearance
A soft, silvery metal. It slowly oxidises in air, forming a protective surface layer.
Uses
Ytterbium is beginning to find a variety of uses, such as in memory devices and tuneable lasers. It can also be used as an industrial catalyst and is increasingly being used to replace other catalysts considered to be too toxic and polluting.
Biological role
Ytterbium has no known biological role. It has low toxicity.
Natural abundance
In common with many lanthanide elements, ytterbium is found principally in the mineral monazite. It can be extracted by ion exchange and solvent extraction.
 
Atomic data terminology

Atomic radius/non -bonded (Å)
Based on Van der Waals forces (where several isotopes exist, a value is presented for the most prevalent isotope). These values were calculated using a multitude of methods including crystallographic data, gas kinetic collision cross sections, critical densities, liquid state properties,for more details please refer to the CRC Handbook of Chemistry and Physics.


Electron affinity (kJ mol-1)
The energy released when an additional electron is attached to the neutral atom and a negative ion is formed (where several isotopes exist, a value is presented for the most prevalent isotope). *


Electronegativity (Pauling scale)
The degree to which an atom attracts electrons towards itself, expressed on a relative scale as a function bond dissociation energies, Ed in eV. χA - χB =(eV)-1/2sqrt(Ed(AB)-[Ed(AA)+Ed(BB)]/2), with χH set as 2.2 (where several isotopes exist, a value is presented for the most prevalent isotope).


1st Ionisation energy (kJ mol-1)
The minimum energy required to remove an electron from a neutral atom in its ground state (where several isotopes exist, a value is presented for the most prevalent isotope).


Covalent radius (Å)
The size of the atom within a covalent bond, given for typical oxidation number and coordination (where several isotopes exist, a value is presented for the most prevalent isotope). ***

Atomic data

 
Atomic radius, non-bonded (Å) 2.26 Covalent radius (Å) 1.78
Electron affinity (kJ mol-1) -3.929 Electronegativity
(Pauling scale)
Unknown
Ionisation energies
(kJ mol-1)
 
1st
603.434
2nd
1174.804
3rd
2416.956
4th
4202.898
5th
-
6th
-
7th
-
8th
-
 

Mining/Sourcing Information

Data for this section of the data page has been provided by the British Geological Survey. To review the full report please click here or please look at their website here.


Key for numbers generated


Governance indicators

1 (low) = 0 to 2

2 (medium-low) = 3 to 4

3 (medium) = 5 to 6

4 (medium-high) = 7 to 8

5 (high) = 9


Reserve distribution (%)

1 (low) = 0 to 30 %

2 (medium-low) = 30 to 45 %

3 (medium) = 45 to 60 %

4 (medium-high) = 60 to 75 %

5 (high) = 75 %

(Where data are unavailable an arbitrary score of 2 was allocated. For example, Be, As, Na, S, In, Cl, Ca and Ge are allocated a score of 2 since reserve base information is unavailable. Reserve base data are also unavailable for coal; however, reserve data for 2008 are available from the Energy Information Administration (EIA).)


Production Concentration

1 (low) = 0 to 30 %

2 (medium-low) = 30 to 45 %

3 (medium) = 45 to 60 %

4 (medium-high) = 60 to 75 %

5 (high) = 75 %


Crustal Abundance

1 (low) = 100 to 1000 ppm

2 (medium-low) =10 to 100 ppm

3 (medium) = 1 to 10 ppm

4 (medium-high) = 0.1 to 1 ppm

5 (high) = 0.1 ppm

(Where data are unavailable an arbitrary score of 2 was allocated. For example, He is allocated a score of 2 since crustal abundance data is unavailable.)


Explanations for terminology


Crustal Abundance (ppm)

The abundance of an element in the Earth's crust in parts-per-million (ppm) i.e. The number of atoms of this element per 1 million atoms of crust.


Sourced

The country with the largest reserve base.


Reserve distribution (%)

This is a measure of the spread of future supplies, recording the percentage of a known resource likely to be available in the intermediate future (reserve base) located in the top three countries.


Production Concentrations

This reports the percentage of an element produced in the top three countries. The higher the value, the larger risk there is to supply.


Political stability of top producer

The World Bank produces a global percentile rank of political stability. The scoring system is given below, and the values for all three production countries were summed.


Relative Supply Risk Index

The Crustal Abundance, Reserve distribution (%), Production Concentration and Governance Factor scores are summed and then divided by 2, to provide an overall Relative Supply Risk Index.

Supply risk

 
Relative supply risk 8
Crustal abundance (ppm) 0.3
Recycling rate (%) Unknown
Substitutability Unknown
Production concentration (%) 97.4
Reserve distribution (%) 59.3
Top 3 producers
  • 1) China
  • 2) Russia
  • 3) Brazil
Top 3 reserve holders
  • 1) China
  • 2) USA
  • 3) CIS
Political stability of top producer 8
Political stability of top reserve holder Unknown
 

Oxidation states and isotopes


Key for Isotopes


Half Life
  y years
  d days
  h hours
  m minutes
  s seconds
Mode of decay
  α alpha particle emission
  β negative beta (electron) emission
  β+ positron emission
  EC orbital electron capture
  sf spontaneous fission
  ββ double beta emission
  ECEC double orbital electron capture

Terminology


Common Oxidation states
The oxidation state of an atom is a measure of the degree of oxidation of an atom. It is defined as being the charge that an atom would have if all bonds were ionic. Free atoms have an oxidation state of 0, and the sum of oxidation numbers within a substance must equal the overall charge.


Important Oxidation states
The most common oxidation states of an element in its compounds.


Isotopes
Elements are defined by the number of protons in its centre (nucleus), whilst the number of neutrons present can vary. The variations in the number of neutrons will create elements of different mass which are known as isotopes.

Oxidation states and isotopes

 
Common oxidation states 3, 2
Isotopes Isotope Atomic mass Natural abundance (%) Half life Mode of decay
  168Yb 167.934 0.13
  170Yb 169.935 3.04
  171Yb 170.936 14.28
  172Yb 171.936 21.83
  173Yb 172.938 16.13
  174Yb 173.939 31.83
  176Yb 175.943 12.76 1026 β-β- 
 

Pressure and temperature - advanced terminology


Specific heat capacity (J kg-1 K-1)

Specific heat capacity is the amount of energy needed to change the temperature of a kilogram of a substance by 1 K.


Young's modulus (GPa)

Young's modulus is a measure of the stiffness of a substance, that is, it provides a measure of how difficult it is to extend a material, with a value given by the ratio of tensile strength to tensile strain.


Shear modulus (GPa)

The shear modulus of a material is a measure of how difficult it is to deform a material, and is given by the ratio of the shear stress to the shear strain.


Bulk modulus (GPa)

The bulk modulus is a measure of how difficult to compress a substance. Given by the ratio of the pressure on a body to the fractional decrease in volume.


Vapour Pressure (Pa)

Vapour pressure is the measure of the propensity of a substance to evaporate. It is defined as the equilibrium pressure exerted by the gas produced above a substance in a closed system.

Pressure and temperature data – advanced

 
Specific heat capacity
(J kg-1 K-1)
155 Young's modulus (GPa) Unknown
Shear modulus (GPa) Unknown Bulk modulus (GPa) Unknown
Vapour pressure  
Temperature (K)
400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
Pressure (Pa)
1.03
x 10-9
3.84
x 10-3
6.74 - - - - - - - -
  Help text not available for this section currently

History

Ytterbium was isolated in 1878 by Jean Charles Galissard de Marignac at the University of Geneva. The story began with yttrium, discovered in 1794, which was contaminated with other rare-earth elements (aka lanthanoids). In 1843, erbium and terbium were extracted from it, and then in 1878, de Marignac separated ytterbium from erbium. He heated erbium nitrate until it decomposed and then extracted the residue with water and obtained two oxides: a red one which was erbium oxide, and a white one which he knew must be a new element, and this he named ytterbium. Even this was eventually shown to contain another rare earth, lutetium, in 1907.


A tiny amount of ytterbium metal was made in 1937 by heating ytterbium chloride and potassium together but was impure. Only in 1953 was a pure sample obtained.

  Help text not available for this section currently

Podcasts

Listen to Ytterbium Podcast
Transcript :

Chemistry in its element - ytterbium


(Promo) 

You're listening to Chemistry in its element brought to you by Chemistry World, the magazine of the Royal Society of Chemistry 

(End promo) 

Meera Senthilingam 

This week an element that likes to be different. Explaining the exceptional chemistry of Ytterbium, here's Louise Natrajan. 

Louise Natrajan 

There is a famous quote about the lanthanides by Pimentel and Sprately from their book, Understanding Chemistry published in 1971: "Lanthanum has only one important oxidation state in aqueous solution, the +3 state. With few exceptions, this tells the whole boring story about the other 14 elements" 

If you've listened to any of the other podcasts in the lanthanide series, I hope you'll agree that this is far from true. While, the most common oxidation state of the lanthanides is indeed the +3 valence state, ytterbium, the last and smallest of the lanthanides or rare earths in the series is one of the exceptions Pimentel and Sprately were talking about. Ytterbium can also exist in the +2 valence state; its compounds are powerful reducing agents and it is capable of reducing water to hydrogen gas. 

Ytterbium is named after the town of Ytterby near Stockholm in Sweden, and makes up the fourth element to be named after this town, the others being of course yttrium, terbium and erbium. Ytterbium was isolated in 1878 by Jean Charles Galissard de Marignac who was a Swiss chemist working at the University of Geneva at the time. Its discovery can be traced back to the oxide yttria. When yttria was first identified, nobody realised that it was contaminated with traces of other rare earth metals. Earlier, in 1843, erbium and terbium were extracted from yttria and then ytterbium was separated from erbium. This was achieved by heating erbium nitrate until it decomposed and then extracting the residue with water to obtain two oxides; a red one, which was identified as erbium oxide and a white powder, which was named ytterbium oxide. In fact, Marignac's ytterbium oxide was not of a pure form either and a few years later in 1907, George Urbain extracted lutetium as its oxide from this ytterbium oxide. 

Ytterbium is one of the more common lanthanide elements, and is not at all rare as its group name of the rare earths may suggest. In fact, it is the 43rd most abundant element on earth and has a greater natural abundance than tin, bromine, uranium or arsenic. In its metallic form, ytterbium is a bright and shiny metal that is both ductile and malleable and is more reactive than the other lanthanide metals, quickly tarnishing in air as it reacts with oxygen. Seven naturally occurring isotopes of ytterbium are known ranging from mass numbers 168 to 176. In addition, ten radioactive isotopes are also known; these isotopes are unstable and break down into other isotopes giving out radiation in the process. Ytterbium-169 in particular emits gamma rays. Gamma rays are similar to X-rays in that they pass through soft materials and tissues but are blocked by more dense materials such as bone. In this regard, small amounts of Yb-169 have been exploited in portable X-ray machines that require no electricity and are much easier to carry around than conventional X-ray machines-useful for radiography of small objects! 

A second intriguing possibility is the use of elemental ytterbium is in super accurate atomic clocks. The isotope Yb-174 has the potential to keep time more accurately than the current gold standard, which is a caesium fountain clock that is accurate to within a second every 100 million years. Then no one will have any excuse for being late! 

As with all the lanthanides, ytterbium exists in the majority of its compounds as the trivalent ion Yb3+. The only ytterbium compound of historical commercial use is ytterbium oxide (Yb2O3); this is used to make alloys and special types of glass and ceramics. However, more recently, some materials doped with ytterbium and erbium can be used to convert invisible infra red light into green and/or red light from the erbium ions; the ytterbium acts cooperatively with the erbium ions and effectively talks to or 'sentitises' the emission from the Er ion. These special materials or phosphors are being devised as alternatives to europium and terbium phosphors in anti forgery security inks and in bank notes. Instead of placing the bank note under UV light to see the security encoding, an infra red laser pen is used to reveal the luminescence colours of erbium, clever hey? 

Terbium compounds are currently used as luminescent probes in biological and biomedical research, but they emit visible light. In the research community, luminescent ytterbium compounds that give out light in the near infra red (around 980 nm) are of current interest and are being developed for use as alternative luminescent probes. This means, that unlike Eu or Tb, which emit visible light, the light is in invisible to our eyes. Human tissue is a lot more transparent to near infra red radiation than to visible light, which means that imaging with near infra red would access greater tissue depths and so give us more detailed information regarding a specific biological event or process. 

Ytterbium is also used in some laser systems and ytterbium fibre laser amplifiers are found in commercial and industrial applications where they are used in marking and engraving. Ytterbium compounds are capable of absorbing light in the near infra red part of the electromagnetic spectrum, which has been exploited to convert radiant energy into electrical energy in devices coupled to solar cells. Additionally, ytterbium compounds are often more potent catalysts than their lanthanide counterparts. They are useful for many organic transformations and are finding increasing use in the chemical industry. 

Well, that was ytterbium, definitely an interesting and fascinating element with many uses as diverse as atomic clocks and solar cells and definitely different from the other lanthanides. 

Meera Senthilingam

 Different indeed with that range of uses. That was Manchester University's Louise Natrajan with the unique chemistry of ytterbium. Now next week, we've got an explosive element and I'll give one you guess as to who it's named after. 

Brian Clegg 

When the bomb exploded on November the first, 1952, it produced an explosion with the power of over 10 million tonnes of TNT - five hundred times the destructive power of the Nagasaki explosion. This was very much a test device - weighing over 80 tons and requiring a structure around 50 feet high to support it, meaning that it could never have been deployed - but it proved, all too well, the capability of the thermonuclear weapon. And in the moments of that intense explosion it produced a brand new element. There among the ash and charred remains of coral were found a couple of hundred atoms of element 99, later to be called einsteinium. 

Meera Senthilingam 

Brian Clegg will be providing more insight into the reactions and naming of einsteinium in next week's Chemistry in its Element. Until then I'm Meera Senthilingam and thank you for listening. 

(Promo) 

Chemistry in its element is brought to you by the Royal Society of Chemistry and produced by thenakedscientists dot com. There's more information and other episodes of Chemistry in its element on our website at chemistryworld dot org forward slash elements. 

(End promo) 

  Help text not available for this section currently
  Help Text

Resources

Description :
This material introduces 5 Commerical Skills Modules for Chemists developed by KKI Associates and the School of Chemistry at the University of Edinburgh. This resource and its components are licensed...
Description :
Can students spot the potential value in each of 5 potential chemistry-based projects? This resource and its components are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 ...
Description :
Can students estimate the potential time and the likely milestones of 2 out of the 5 chemistry-based projects? This resource and its components are licensed under a Creative Commons Attribution-NonCo...
Description :
Students are asked to summarise and critique 2 out of the 5 chemistry-based projects, based on their previous work, and present their preferred option to a "business" audience. This resource and its ...
Description :
Can students identify and quantify users/customers who receive benefits from 2 out of the 5 chemistry-based projects? This resource and its components are licensed under a Creative Commons Attributio...
Description :
Can students estimate the total cost, and compare it with the value, of 2 out of the 5 chemistry-based projects? This resource and its components are licensed under a Creative Commons Attribution-Non...
Learn Chemistry: Your single route to hundreds of free-to-access chemistry teaching resources.
 

Terms & Conditions


Images © Murray Robertson 1999-2011
Text © The Royal Society of Chemistry 1999-2011

Welcome to "A Visual Interpretation of The Table of Elements", the most striking version of the periodic table on the web. This Site has been carefully prepared for your visit, and we ask you to honour and agree to the following terms and conditions when using this Site.


Copyright of and ownership in the Images reside with Murray Robertson. The RSC has been granted the sole and exclusive right and licence to produce, publish and further license the Images.


The RSC maintains this Site for your information, education, communication, and personal entertainment. You may browse, download or print out one copy of the material displayed on the Site for your personal, non-commercial, non-public use, but you must retain all copyright and other proprietary notices contained on the materials. You may not further copy, alter, distribute or otherwise use any of the materials from this Site without the advance, written consent of the RSC. The images may not be posted on any website, shared in any disc library, image storage mechanism, network system or similar arrangement. Pornographic, defamatory, libellous, scandalous, fraudulent, immoral, infringing or otherwise unlawful use of the Images is, of course, prohibited.


If you wish to use the Images in a manner not permitted by these terms and conditions please contact the Publishing Services Department by email. If you are in any doubt, please ask.


Commercial use of the Images will be charged at a rate based on the particular use, prices on application. In such cases we would ask you to sign a Visual Elements licence agreement, tailored to the specific use you propose.


The RSC makes no representations whatsoever about the suitability of the information contained in the documents and related graphics published on this Site for any purpose. All such documents and related graphics are provided "as is" without any representation or endorsement made and warranty of any kind, whether expressed or implied, including but not limited to the implied warranties of fitness for a particular purpose, non-infringement, compatibility, security and accuracy.


In no event shall the RSC be liable for any damages including, without limitation, indirect or consequential damages, or any damages whatsoever arising from use or loss of use, data or profits, whether in action of contract, negligence or other tortious action, arising out of or in connection with the use of the material available from this Site. Nor shall the RSC be in any event liable for any damage to your computer equipment or software which may occur on account of your access to or use of the Site, or your downloading of materials, data, text, software, or images from the Site, whether caused by a virus, bug or otherwise.


We hope that you enjoy your visit to this Site. We welcome your feedback.

References

 
Images:  Visual Elements © Murray Robertson 2011
Mining and Sourcing data:  British Geological Survey – natural environment research council.
Text:  John Emsley Nature’s Building Blocks: An A-Z Guide to the Elements, Oxford University Press, 2nd Edition, 2011.
Additional information for platinum, gold, neodymium and dysprosium obtained from Material Value Consultancy Ltd www.matvalue.com
Data: CRC Handbook of Chemistry and Physics, CRC Press, 92nd Edition, 2011.
G. W. C. Kaye and T. H. Laby Tables of Physical and Chemical Constants, Longman, 16th Edition, 1995.
Members of the RSC can access these books through our library.