Periodic Table > Tungsten
 

Terminology


Allotropes
Some elements exist in several different structural forms, these are called allotropes.


For more information on Murray Robertson’s image see Uses and properties facts below.

 

Fact box terminology


Group
Elements appear in columns or ‘groups’ in the periodic table. Members of a group typically have similar properties and electron configurations in their outer shell.


Period
Elements are laid out into rows or ‘periods’ so that similar chemical behaviour is observed in columns.


Block
Elements are organised into blocks by the orbital type in which the outer electrons are found. These blocks are named for the characteristic spectra they produce: sharp, principal, diffuse, and fundamental.


Atomic Number
The number of protons in the nucleus.


Atomic Radius/non -bonded (Å)
based on Van der Waals forces (where several isotopes exist, a value is presented for the most prevalent isotope). These values were calculated using a multitude of methods including crystallographic data, gas kinetic collision cross sections, critical densities, liquid state properties, for more details please refer to the CRC Handbook of Chemistry and Physics.


Electron Configuration
The arrangements of electrons above the last (closed shell) noble gas.


Isotopes
Elements are defined by the number of protons in its centre (nucleus), whilst the number of neutrons present can vary. The variations in the number of neutrons will create elements of different mass which are known as isotopes.


Melting Point (oC)
The temperature at which the solid-liquid phase change occurs.


Melting Point (K)
The temperature at which the solid-liquid phase change occurs.


Melting Point (oF)
The temperature at which the solid-liquid phase change occurs.


Boiling Point (oC)
The temperature at which the liquid-gas phase change occurs.


Boiling Point (K)
The temperature at which the liquid-gas phase change occurs.


Boiling Point (oF)
The temperature at which the liquid-gas phase change occurs.


Sublimation
Elements that do not possess a liquid phase at atmospheric pressure (1 atm) are described as going through a sublimation process.


Density (g cm-3)
Density is the mass of a substance that would fill 1 cm3 at room temperature.


Relative Atomic Mass
The mass of an atom relative to that of Carbon-12. This is approximately the sum of the number of protons and neutrons in the nucleus. Where more than one isotope exists the value given is the abundance weighted average.


Key Isotopes (% abundance)
An element must by definition have a fixed number of protons in its nucleus, and as such has a fixed atomic number, however variants of an element can exist with differing numbers of neutrons, and hence a different atomic masses (e.g. 12C has 6 protons and 6 neutrons and 13C has 6 protons and 7 neutrons).


CAS number
The Chemical Abstracts Service registry number is a unique identifier of a particular chemical, designed to prevent confusion arising from different languages and naming systems (where several isotopes exist, a value is presented for the most prevalent isotope).

Fact box

 
Group Melting point 3414 oC, 6177.2 oF, 3687.15 K 
Period Boiling point 5555 oC, 10031 oF, 5828.15 K 
Block Density (g cm-3) 19.3 
Atomic number 74  Relative atomic mass 183.84  
State at room temperature Solid  Key isotopes 182W, 184W, 186
Electron configuration [Xe] 4f145d46s2  CAS number 7440-33-7 
ChemSpider ID 22403 ChemSpider is a free chemical structure database
 

Uses and properties terminology


Image Explanation

Murray Robertson is the artist behind the images which make up Visual Elements. This is where the artist explains his interpretation of the element and the science behind the picture.


Natural Abundance

Where this element is most commonly found in nature.


Biological Roles

The elements role within the body of humans, animals and plants. Also functionality in medical advancements both today and years ago.


Appearance

The description of the element in its natural form.

Uses and properties

 
Image explanation
The symbol used reflects the once common use of the element in light bulbs.
Appearance
A shiny, silvery-white metal.
Uses
Tungsten was used extensively for the filaments of old-style incandescent light bulbs, but these have been phased out in many countries. This is because they are not very energy efficient; they produce much more heat than light.

Tungsten has the highest melting point of all metals and is alloyed with other metals to strengthen them. Tungsten and its alloys are used in many high-temperature applications, such as arc-welding electrodes and heating elements in high-temperature furnaces.

Tungsten carbide is immensely hard and is very important to the metal-working, mining and petroleum industries. It is made by mixing tungsten powder and carbon powder and heating to 2200°C. It makes excellent cutting and drilling tools, including a new ‘painless’ dental drill which spins at ultra-high speeds.

Calcium and magnesium tungstates are widely used in fluorescent lighting.
Biological role
Tungsten is the heaviest metal to have a known biological role. Some bacteria use tungsten in an enzyme to reduce carboxylic acids to aldehydes.
Natural abundance
The principal tungsten-containing ores are scheelite and wolframite. The metal is obtained commercially by reducing tungsten oxide with hydrogen or carbon.
 
Atomic data terminology

Atomic radius/non -bonded (Å)
Based on Van der Waals forces (where several isotopes exist, a value is presented for the most prevalent isotope). These values were calculated using a multitude of methods including crystallographic data, gas kinetic collision cross sections, critical densities, liquid state properties,for more details please refer to the CRC Handbook of Chemistry and Physics.


Electron affinity (kJ mol-1)
The energy released when an additional electron is attached to the neutral atom and a negative ion is formed (where several isotopes exist, a value is presented for the most prevalent isotope). *


Electronegativity (Pauling scale)
The degree to which an atom attracts electrons towards itself, expressed on a relative scale as a function bond dissociation energies, Ed in eV. χA - χB =(eV)-1/2sqrt(Ed(AB)-[Ed(AA)+Ed(BB)]/2), with χH set as 2.2 (where several isotopes exist, a value is presented for the most prevalent isotope).


1st Ionisation energy (kJ mol-1)
The minimum energy required to remove an electron from a neutral atom in its ground state (where several isotopes exist, a value is presented for the most prevalent isotope).


Covalent radius (Å)
The size of the atom within a covalent bond, given for typical oxidation number and coordination (where several isotopes exist, a value is presented for the most prevalent isotope). ***

Atomic data

 
Atomic radius, non-bonded (Å) 2.18 Covalent radius (Å) 1.5
Electron affinity (kJ mol-1) 78.732 Electronegativity
(Pauling scale)
1.7
Ionisation energies
(kJ mol-1)
 
1st
758.763
2nd
1553.413
3rd
-
4th
-
5th
-
6th
-
7th
-
8th
-
 

Mining/Sourcing Information

Data for this section of the data page has been provided by the British Geological Survey. To review the full report please click here or please look at their website here.


Key for numbers generated


Governance indicators

1 (low) = 0 to 2

2 (medium-low) = 3 to 4

3 (medium) = 5 to 6

4 (medium-high) = 7 to 8

5 (high) = 9


Reserve distribution (%)

1 (low) = 0 to 30 %

2 (medium-low) = 30 to 45 %

3 (medium) = 45 to 60 %

4 (medium-high) = 60 to 75 %

5 (high) = 75 %

(Where data are unavailable an arbitrary score of 2 was allocated. For example, Be, As, Na, S, In, Cl, Ca and Ge are allocated a score of 2 since reserve base information is unavailable. Reserve base data are also unavailable for coal; however, reserve data for 2008 are available from the Energy Information Administration (EIA).)


Production Concentration

1 (low) = 0 to 30 %

2 (medium-low) = 30 to 45 %

3 (medium) = 45 to 60 %

4 (medium-high) = 60 to 75 %

5 (high) = 75 %


Crustal Abundance

1 (low) = 100 to 1000 ppm

2 (medium-low) =10 to 100 ppm

3 (medium) = 1 to 10 ppm

4 (medium-high) = 0.1 to 1 ppm

5 (high) = 0.1 ppm

(Where data are unavailable an arbitrary score of 2 was allocated. For example, He is allocated a score of 2 since crustal abundance data is unavailable.)


Explanations for terminology


Crustal Abundance (ppm)

The abundance of an element in the Earth's crust in parts-per-million (ppm) i.e. The number of atoms of this element per 1 million atoms of crust.


Sourced

The country with the largest reserve base.


Reserve distribution (%)

This is a measure of the spread of future supplies, recording the percentage of a known resource likely to be available in the intermediate future (reserve base) located in the top three countries.


Production Concentrations

This reports the percentage of an element produced in the top three countries. The higher the value, the larger risk there is to supply.


Political stability of top producer

The World Bank produces a global percentile rank of political stability. The scoring system is given below, and the values for all three production countries were summed.


Relative Supply Risk Index

The Crustal Abundance, Reserve distribution (%), Production Concentration and Governance Factor scores are summed and then divided by 2, to provide an overall Relative Supply Risk Index.

Supply risk

 
Relative supply risk 8.5
Crustal abundance (ppm) 1
Recycling rate (%) Unknown
Substitutability Unknown
Production concentration (%) 82.7
Reserve distribution (%) 66.7
Top 3 producers
  • 1) China
  • 2) Canada
  • 3) Russia
Top 3 reserve holders
  • 1) China
  • 2) Canada
  • 3) Russia
Political stability of top producer 7
Political stability of top reserve holder Unknown
 

Oxidation states and isotopes


Key for Isotopes


Half Life
  y years
  d days
  h hours
  m minutes
  s seconds
Mode of decay
  α alpha particle emission
  β negative beta (electron) emission
  β+ positron emission
  EC orbital electron capture
  sf spontaneous fission
  ββ double beta emission
  ECEC double orbital electron capture

Terminology


Common Oxidation states
The oxidation state of an atom is a measure of the degree of oxidation of an atom. It is defined as being the charge that an atom would have if all bonds were ionic. Free atoms have an oxidation state of 0, and the sum of oxidation numbers within a substance must equal the overall charge.


Important Oxidation states
The most common oxidation states of an element in its compounds.


Isotopes
Elements are defined by the number of protons in its centre (nucleus), whilst the number of neutrons present can vary. The variations in the number of neutrons will create elements of different mass which are known as isotopes.

Oxidation states and isotopes

 
Common oxidation states 6, 5, 4, 3, 2, 0
Isotopes Isotope Atomic mass Natural abundance (%) Half life Mode of decay
  180W 179.947 0.12 1.8 x 1018 α 
  182W 181.948 26.5 > 7.7 x 1021 α 
  183W 182.95 14.31 > 4.1 x 1021 α 
  184W 183.951 30.64 > 8.9 x 1021 α 
  186W 185.954 28.43 > 8.2 x 1021 α 
 

Pressure and temperature - advanced terminology


Specific heat capacity (J kg-1 K-1)

Specific heat capacity is the amount of energy needed to change the temperature of a kilogram of a substance by 1 K.


Young's modulus (GPa)

Young's modulus is a measure of the stiffness of a substance, that is, it provides a measure of how difficult it is to extend a material, with a value given by the ratio of tensile strength to tensile strain.


Shear modulus (GPa)

The shear modulus of a material is a measure of how difficult it is to deform a material, and is given by the ratio of the shear stress to the shear strain.


Bulk modulus (GPa)

The bulk modulus is a measure of how difficult to compress a substance. Given by the ratio of the pressure on a body to the fractional decrease in volume.


Vapour Pressure (Pa)

Vapour pressure is the measure of the propensity of a substance to evaporate. It is defined as the equilibrium pressure exerted by the gas produced above a substance in a closed system.

Pressure and temperature data – advanced

 
Specific heat capacity
(J kg-1 K-1)
132 Young's modulus (GPa) 411
Shear modulus (GPa) 160.6 Bulk modulus (GPa) Unknown
Vapour pressure  
Temperature (K)
400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
Pressure (Pa)
- - - - - - - - 2.62
x 10-10
3.01
x 10-8
1.59
x 10-6
  Help text not available for this section currently

History

More than 350 years ago, porcelain makers in China incorporated a unique peach colour into their designs by means of a tungsten pigment that was not known in the West. Indeed it was not for another century that chemists in Europe became aware of it. In 1779, Peter Woulfe examined a mineral from Sweden and concluded it contained a new metal, but he did not separate it. Then in 1781, Wilhelm Scheele investigated it and succeeded in isolating an acidic white oxide and which he rightly deduced was the oxide of a new metal.


The credit for discovering tungsten goes to the brothers, Juan and Fausto Elhuyar, who were interested in mineralogy and were based at the Seminary at Vergara, in Spain, 1783 they produced the same acidic metal oxide and even reduced it to tungsten metal by heating with carbon.

  Help text not available for this section currently

Podcasts

Listen to Tungsten Podcast
Transcript :

Chemistry in Its Element - Tungsten


(Promo)

 

You're listening to Chemistry in its element brought to you by Chemistry World, the magazine of the Royal Society of Chemistry.

 

(End promo)

 

Chris Smith

Hello, this week supersonic steels, fast formula cars and upset Spanish scientists.   But what are they arguing about?   Here's Katherine Holt

 

Katherine Holt

What's in a name? How do we decide what to call an element anyway? Is the name of an element the same in all languages? Does it matter? And who decides?

 

Well the answer to the last question is easy - the naming of elements is ultimately decided by IUPAC - the International Union for Pure and Applied Chemistry. The answer to the other questions is mainly 'it depends'! Take for example the case of element 74 - or as we call it in English - Tungsten. Ever wonder why its symbol is W?   Chemists in many European countries don't have to wonder why - because they call it Wolfram. The two-name confusion arises from early mineralogy. The name 'tungsten' is derived from the old Swedish name for 'heavy stone', a name given to a known tungsten-containing mineral. The name 'wolfram' comes from a different mineral, wolframite, which also has a high content of the element we call tungsten.  

 

Until recently both names - tungsten and wolfram - were included in 'Nomenclature of Inorganic Chemistry - IUPAC Recommendations' or the 'Red book' as it is known in IUPAC circles. However in 2005 'wolfram' was dropped and tungsten became the sole official IUPAC name for this element. However, wolfram did not go down without a fight! In particular the Spanish chemists were unhappy to see the change - not least because their compatriots the Delhuyar brothers are credited with the discovery of the element and its isolation from the mineral wolframite.   In their original paper, the Delhuyar brothers requested the name wolfram for the newly isolated element, saying 'We will call this new metal wolfram, taking its name from the matter of which it has been extracted.this name is more suitable than tungsten...... because wolframite is a mineral which was known long before...., at least among the mineralogists, and also because the name wolfram is accepted in almost all European languages....."

 

Although this may be a compelling case, IUPAC argues that is that its working language is English and so Tungsten is the most appropriate name. They make the point that students will have to learn some history of chemistry to know why the element symbol is W. The same is true also for a number of other elements, such as potassium, mercury, and silver whose symbols bear no relation to their English name.

 

However, it seems unlikely to me that such a colourful name as wolfram will be forgotten. In case you were wondering, it is believed to be derived from the German for 'wolf's foam'. Many centuries ago mid-European tin smelters observed that when a certain mineral was present in the tin ore, their yield of tin was much reduced. They called this mineral 'wolfs foam' because, they said, it devoured the tin much like a wolf would devour a sheep! Thus over time the name 'wolframite' evolved for this tungsten-containing ore.  

 

In contrast to its semi-mythical role in early metallurgy, these days the applications of tungsten are highly technological, making use of its hardness, stability and high melting point.   Current uses are as electrodes, heating elements and field emitters, and as filaments in light bulbs and cathode ray tubes. Tungsten is commonly used in heavy metal alloys such as high speed steel, from which cutting tools are manufactured. It is also used in the so-called 'superalloys' to form wear-resistant coatings. Its density makes it useful as ballast in aircraft and in Formula one cars and more controversially as supersonic shrapnel and armour piercing ammunition in missiles. 

 

It seems to me that the name tungsten, or 'heavy stone', is justified by these applications, which exploit its strength and density. I'm glad, though, that the birth of chemistry in the activity of those ancient metallurgists and mineralogists is still celebrated by the use of the symbol W for element 74. This ensures that we never forget that there was a time, not so long ago, when many chemical processes could only be explained through metaphor.   

 

Chris Smith

I always used to remember Tungsten's letter W as standing for the wrong symbol, but can you think of the one letter of the alphabet that isn't used in the periodic table?   Now there's something to ponder on.   In the meantime, thank you very much to UCL's Katherine Holt. 

 

Next week we'll meet the element that was introduced to the world in, its fair to say, a pretty unusual way.

 

Brian Clegg

The first hint the world had of the existence of Americium was not in a paper for a distinguished journal but on a children's radio quiz in 1945.   Seaborg appeared as a guest on MBC's Quiz Kids show where one of the participants asked him if they produced any other new elements as well as plutonium and neptunium.   As Seaborg was due to formally announce the discovery of Americium five days later he let slip its existance along with element 96.

 

Chris Smith

And Brian Clegg will be telling the story of the radio active element Americium and how it keeps homes safe in next week's Chemistry in its Element, I hope you can join us.   I'm Chris Smith, thank you for listening and goodbye.

 

(Promo)

Chemistry in its elementis brought to you by the Royal Society of Chemistry and produced by thenakedscientists dot com. There's more information and other episodes of Chemistry in its element on our website at chemistryworld dot org forward slash elements. 

(End promo)

  Help text not available for this section currently
  Help Text

Resources

Description :
In this experiment you will be looking at a group of transition elements chromium, molybdenum and tungsten.
Description :
Assessment for Learning is an effective way of actively involving students in their learning. This is a series of plans based around chemistry topics.
Description :
When concentrated hydrochloric acid is added to a very dilute solution of copper sulfate, the pale blue solution slowly turns yellow-green on the formation of a copper chloride complex. When concentr...
Description :
The purpose of this experiment is to observe and interpret some of the chemistry of three first row transition elements and to compare them with a typical s-block element.
Description :
The Periodic Table allows chemists to see similarities and trends in the properties of chemical elements. This experiment illustrates some properties of the common transition elements and their compo...
Description :
The purpose of this experiment is to examine some of the solution chemistry of the transition elements.
 

Terms & Conditions


Images © Murray Robertson 1999-2011
Text © The Royal Society of Chemistry 1999-2011

Welcome to "A Visual Interpretation of The Table of Elements", the most striking version of the periodic table on the web. This Site has been carefully prepared for your visit, and we ask you to honour and agree to the following terms and conditions when using this Site.


Copyright of and ownership in the Images reside with Murray Robertson. The RSC has been granted the sole and exclusive right and licence to produce, publish and further license the Images.


The RSC maintains this Site for your information, education, communication, and personal entertainment. You may browse, download or print out one copy of the material displayed on the Site for your personal, non-commercial, non-public use, but you must retain all copyright and other proprietary notices contained on the materials. You may not further copy, alter, distribute or otherwise use any of the materials from this Site without the advance, written consent of the RSC. The images may not be posted on any website, shared in any disc library, image storage mechanism, network system or similar arrangement. Pornographic, defamatory, libellous, scandalous, fraudulent, immoral, infringing or otherwise unlawful use of the Images is, of course, prohibited.


If you wish to use the Images in a manner not permitted by these terms and conditions please contact the Publishing Services Department by email. If you are in any doubt, please ask.


Commercial use of the Images will be charged at a rate based on the particular use, prices on application. In such cases we would ask you to sign a Visual Elements licence agreement, tailored to the specific use you propose.


The RSC makes no representations whatsoever about the suitability of the information contained in the documents and related graphics published on this Site for any purpose. All such documents and related graphics are provided "as is" without any representation or endorsement made and warranty of any kind, whether expressed or implied, including but not limited to the implied warranties of fitness for a particular purpose, non-infringement, compatibility, security and accuracy.


In no event shall the RSC be liable for any damages including, without limitation, indirect or consequential damages, or any damages whatsoever arising from use or loss of use, data or profits, whether in action of contract, negligence or other tortious action, arising out of or in connection with the use of the material available from this Site. Nor shall the RSC be in any event liable for any damage to your computer equipment or software which may occur on account of your access to or use of the Site, or your downloading of materials, data, text, software, or images from the Site, whether caused by a virus, bug or otherwise.


We hope that you enjoy your visit to this Site. We welcome your feedback.

References

 
Images:  Visual Elements © Murray Robertson 2011
Mining and Sourcing data:  British Geological Survey – natural environment research council.
Text:  John Emsley Nature’s Building Blocks: An A-Z Guide to the Elements, Oxford University Press, 2nd Edition, 2011.
Additional information for platinum, gold, neodymium and dysprosium obtained from Material Value Consultancy Ltd www.matvalue.com
Data: CRC Handbook of Chemistry and Physics, CRC Press, 92nd Edition, 2011.
G. W. C. Kaye and T. H. Laby Tables of Physical and Chemical Constants, Longman, 16th Edition, 1995.
Members of the RSC can access these books through our library.