Periodic Table > Platinum


Some elements exist in several different structural forms, called allotropes. Each allotrope has different physical properties.

For more information on the Visual Elements image see the Uses and properties section below.



A vertical column in the periodic table. Members of a group typically have similar properties and electron configurations in their outer shell.

A horizontal row in the periodic table. The atomic number of each element increases by one, reading from left to right.

Elements are organised into blocks by the orbital type in which the outer electrons are found. These blocks are named for the characteristic spectra they produce: sharp (s), principal (p), diffuse (d), and fundamental (f).

Atomic number
The number of protons in an atom.

Electron configuration
The arrangements of electrons above the last (closed shell) noble gas.

Melting point
The temperature at which the solid–liquid phase change occurs.

Boiling point
The temperature at which the liquid–gas phase change occurs.

The transition of a substance directly from the solid to the gas phase without passing through a liquid phase.

Density (g cm−3)
Density is the mass of a substance that would fill 1 cm3 at room temperature.

Relative atomic mass
The mass of an atom relative to that of carbon-12. This is approximately the sum of the number of protons and neutrons in the nucleus. Where more than one isotope exists, the value given is the abundance weighted average.

Atoms of the same element with different numbers of neutrons.

CAS number
The Chemical Abstracts Service registry number is a unique identifier of a particular chemical, designed to prevent confusion arising from different languages and naming systems.

Fact box

Group 10  Melting point 1768.2°C, 3214.8°F, 2041.4 K 
Period Boiling point 3825°C, 6917°F, 4098 K 
Block Density (g cm−3) 21.5 
Atomic number 78  Relative atomic mass 195.084  
State at 20°C Solid  Key isotopes 195Pt 
Electron configuration [Xe] 4f145d96s1  CAS number 7440-06-4 
ChemSpider ID 22381 ChemSpider is a free chemical structure database


Image explanation

Murray Robertson is the artist behind the images which make up Visual Elements. This is where the artist explains his interpretation of the element and the science behind the picture.


The description of the element in its natural form.

Biological role

The role of the element in humans, animals and plants.

Natural abundance

Where the element is most commonly found in nature, and how it is sourced commercially.

Uses and properties

Image explanation
The image is based on Mayan character glyphs. The Mayans used platinum in jewellery.
A shiny, silvery-white metal as resistant to corrosion as gold.
Platinum is used extensively for jewellery. Its main use, however, is in catalytic converters for cars, trucks and buses. This accounts for about 50% of demand each year. Platinum is very effective at converting emissions from the vehicle’s engine into less harmful waste products.

Platinum is used in the chemicals industry as a catalyst for the production of nitric acid, silicone and benzene. It is also used as a catalyst to improve the efficiency of fuel cells.

The electronics industry uses platinum for computer hard disks and thermocouples.

Platinum is also used to make optical fibres and LCDs, turbine blades, spark plugs, pacemakers and dental fillings.

Platinum compounds are important chemotherapy drugs used to treat cancers.
Biological role
Platinum has no known biological role. It is non-toxic.
Natural abundance
Platinum is found uncombined in alluvial deposits. Most commercially produced platinum comes from South Africa, from the mineral cooperite (platinum sulfide). Some platinum is prepared as a by-product of copper and nickel refining.
  Help text not available for this section currently


Probably the oldest worked specimen of platinum is that from an ancient Egyptian casket of the 7th century BC, unearthed at Thebes and dedicated to Queen Shapenapit. Otherwise this metal was unknown in Europe and Asia for the next two millennia, although on the Pacific coast of South America, there were people able to work platinum, as shown by burial goods dating back 2000 years.

In 1557 an Italian scholar, Julius Scaliger, wrote of a metal from Spanish Central America that could not be made to melt and was no doubt platinum. Then, in 1735, Antonio Ulloa encountered this curious metal, but as he returned to Europe his ship was captured by the Royal Navy and he ended up in London. There, members of the Royal Society were most interested to hear about the new metal, and by the 1750s, platinum was being reported and discussed throughout Europe.

Atomic radius, non-bonded
Half of the distance between two unbonded atoms of the same element when the electrostatic forces are balanced. These values were determined using several different methods.

Covalent radius
Half of the distance between two atoms within a single covalent bond. Values are given for typical oxidation number and coordination.

Electron affinity
The energy released when an electron is added to the neutral atom and a negative ion is formed.

Electronegativity (Pauling scale)
The tendency of an atom to attract electrons towards itself, expressed on a relative scale.

First ionisation energy
The minimum energy required to remove an electron from a neutral atom in its ground state.

Atomic data

Atomic radius, non-bonded (Å) 2.13 Covalent radius (Å) 1.30
Electron affinity (kJ mol−1) 205.321 Electronegativity
(Pauling scale)
Ionisation energies
(kJ mol−1)


Common oxidation states

The oxidation state of an atom is a measure of the degree of oxidation of an atom. It is defined as being the charge that an atom would have if all bonds were ionic. Uncombined elements have an oxidation state of 0. The sum of the oxidation states within a compound or ion must equal the overall charge.


Atoms of the same element with different numbers of neutrons.

Key for isotopes

Half life
  y years
  d days
  h hours
  m minutes
  s seconds
Mode of decay
  α alpha particle emission
  β negative beta (electron) emission
  β+ positron emission
  EC orbital electron capture
  sf spontaneous fission
  ββ double beta emission
  ECEC double orbital electron capture

Oxidation states and isotopes

Common oxidation states 4, 2
Isotopes Isotope Atomic mass Natural abundance (%) Half life Mode of decay
  190Pt 189.960 0.012 4.5 x 1011 α 
  192Pt 191.961 0.782
  194Pt 193.963 32.86
  195Pt 194.965 33.78
  196Pt 195.965 25.21
  198Pt 197.968 7.356


Data for this section been provided by the British Geological Survey.

Relative supply risk

An integrated supply risk index from 1 (very low risk) to 10 (very high risk). This is calculated by combining the scores for crustal abundance, reserve distribution, production concentration, substitutability, recycling rate and political stability scores.

Crustal abundance (ppm)

The number of atoms of the element per 1 million atoms of the Earth’s crust.

Recycling rate

The percentage of a commodity which is recycled. A higher recycling rate may reduce risk to supply.


The availability of suitable substitutes for a given commodity.
High = substitution not possible or very difficult.
Medium = substitution is possible but there may be an economic and/or performance impact
Low = substitution is possible with little or no economic and/or performance impact

Production concentration

The percentage of an element produced in the top producing country. The higher the value, the larger risk there is to supply.

Reserve distribution

The percentage of the world reserves located in the country with the largest reserves. The higher the value, the larger risk there is to supply.

Political stability of top producer

A percentile rank for the political stability of the top producing country, derived from World Bank governance indicators.

Political stability of top reserve holder

A percentile rank for the political stability of the country with the largest reserves, derived from World Bank governance indicators.

Supply risk

Relative supply risk 7.6
Crustal abundance (ppm) 0.000037
Recycling rate (%) >30
Substitutability High
Production concentration (%) 60
Reserve distribution (%) 95
Top 3 producers
  • 1) South Africa
  • 2) Russia
  • 3) Zimbabwe
Top 3 reserve holders
  • 1) South Africa
  • 2) Russia
  • 3) USA
Political stability of top producer 44.3
Political stability of top reserve holder 44.3


Specific heat capacity (J kg−1 K−1)

Specific heat capacity is the amount of energy needed to change the temperature of a kilogram of a substance by 1 K.

Young's modulus

A measure of the stiffness of a substance. It provides a measure of how difficult it is to extend a material, with a value given by the ratio of tensile strength to tensile strain.

Shear modulus

A measure of how difficult it is to deform a material. It is given by the ratio of the shear stress to the shear strain.

Bulk modulus

A measure of how difficult it is to compress a substance. It is given by the ratio of the pressure on a body to the fractional decrease in volume.

Vapour pressure

A measure of the propensity of a substance to evaporate. It is defined as the equilibrium pressure exerted by the gas produced above a substance in a closed system.

Pressure and temperature data – advanced

Specific heat capacity
(J kg−1 K−1)
133 Young's modulus (GPa) 168.0
Shear modulus (GPa) 61.0 Bulk modulus (GPa) 228.0
Vapour pressure  
Temperature (K)
400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
Pressure (Pa)
- - - - - 2.34
x 10-8
x 10-5
0.00143 0.0689 0.153 1.59
  Help text not available for this section currently


Listen to Platinum Podcast
Transcript :

Chemistry in its element: platinum


You're listening to Chemistry in its element brought to you by Chemistry World, the magazine of the Royal Society of Chemistry.

(End promo)

Chris Smith

Hello - blonde hair, expensive jewellery, a new generation of catalysts and anti cancer drugs plus a mistake that cost the Spanish conquistadors very dear. Have you spotted the connection yet? If not, here's Katherine Haxton.

Katherine Haxton

Platinum as a metal speaks of prestige, value and power. An album has gone platinum, platinum wedding anniversaries, and highly prized platinum jewellery such as rings and Rolex watches.

Platinum is a very different substance to a chemist. Platinum metal is silvery white and does not oxidise, properties that make it highly appealing for jewellery. It is more precious than silver but with prices more volatile than gold. Platinum has broad chemical resistance although the metal may be dissolved in aqua regia, a highly acidic mixture of nitric and hydrochloric acids, forming chloroplatinic acid, and has an extremely high melting point in excess of two thousand degrees centigrade.

Spanish conquistadors in the 16th century viewed platinum as a nuisance, a white metal obtained while panning for gold and difficult to separate from the gold. It was named Platina, a diminutive of Plata, the Spanish word for silver. Platina was believed to be unripe gold, and was flung back into the rivers in the hope that it would continue to mature into gold. There is anecdotal evidence of gold mines being abandoned due to platinum contamination.

Platinum's properties allowed it to defy identification and classification until the 18th century. Its high melting point and broad chemical resistance meant that obtaining a pure sample of the metal was difficult. Platinum's place as a precious metal was first established in the 18th century by Henrik Sheffer, who succeeded in melting or fusing platinum by adding arsenic. Three chemists, Lavoisier, Seguin and Musnier began working together in the late 18th century to improve the design of their furnaces to enable platinum to be melted without the need of fluxes such as arsenic. The French Chemist Lavoisier wrote for help from Josiah Wedgewood, the founder of Wedgewood pottery, asking for a clay that could be used to manufacture vessels that could withstand the high temperatures needed to melt platinum. Seguin later requested details of which fuel could burn sufficiently hot enough, and for further details on creating the hottest flame possible. Lavoisier succeeded in melting platinum using oxygen to enhance the heat of the furnace but it would still be many years before a process could be found to produce commercial quantities. Of course, that was prior to Lavoisier's beheading at the height of the French Revolution in 1794. In 1792 the French Academy of Science obtained a supply of platinum from Marc-Etienne Janety, a master goldsmith in Paris. Janety had managed to develop a means of producing workable platinum using arsenic, and a way to remove the arsenic afterwards with limited success. It is ironic that the very properties that make platinum metal so desirable caused so many difficulties for its discoverers. King Louis XVI of France believed that platinum metal was only fit for Kings, due in part to the difficulties in working with pure samples.

In 1859, a method for melting up to 15 kilograms of platinum using a furnace lined with lime and oxygen and coal gas as fuel was described by Deville and Debray. The 19th century also saw the development of the first fuel cell using platinum electrodes. Fuel cells produce electricity through electrochemical reactions, often using platinum as non-reactive electrodes, and represent an important area of research into environmentally friendly technologies and cleaner, greener sources of energy today. The very properties of platinum that had made it so hard to work with became valued and platinum was used for lab equipment, and other applications where its broad chemical resistance was required. Johnson Matthey perfected the techniques of separating and refining the platinum group metals and in 1879 Matthey produced a standard metre measure made of a platinum and iridium alloy.

Platinum compounds have been well documented, perhaps none more so than cis-diamminedichloroplatinum(II), cisplatin. In the early 1960s, Barnett Rosenberg was conducting experiments on bacteria, measuring the effects of electrical currents on cell growth. It was observed that the E.coli bacteria were abnormally long during the experiment, something that could not be attributed to the electric current. Further investigation revealed a number of platinum compounds were being formed due to reaction of the buffer and platinum electrode and subsequent characterization of these compounds isolated cisplatin. Cisplatin was found to inhibit cell division thus causing the elongation of the bacteria, and was tested in mice for anticancer properties. This was at the height of a push for new cures for cancer, and screening programs for novel chemotherapy agents. Initial experiments failed due to too high a dose but finally evidence was obtained for cisplatin. Cisplatin today is widely used to treat epithelial malignancies with outstanding results in the treatment of testicular cancers. Cisplatin is a remarkable tale of serendipity in science research and a wonderful example of how major breakthroughs cannot be commanded. The success of cisplatin has spawned a search for new platinum anticancer compounds that has produced oxaliplatin and carboplatin to date with several other compounds at various stages of development. Platinum's chemical legacy goes far beyond medicinal chemistry.

In the last 50 years platinum catalysts have become widespread in industry, used to enhance the octane number of gasoline, and manufacturing primary feedstocks for the plastics industry. Platinum plays a significant role in many of the manufactured goods we rely on today. The Nobel Prize in Chemistry was awarded, in 2007, to Gerhard Ertl who's work included a study of oxidation of carbon monoxide on platinum surfaces. Platinum group metals are also components of many autocatalysts, converting car exhaust gases in to less harmful substance.

And our fascination with platinum as a rare and robust metal continues. The term 'platinum blond' came about in the 1930's when actresses with platinum jewellery were the stars of newly invented talking pictures. The sinking of the Titanic inspired public displays of mourning, including a new fashion for black and white jewellery. Platinum metal became popular in such pieces due to its pale colour. More recently it was the metal of choice for the wedding bands of Elvis and Priscilla Presley, and remains synonymous with quality and wealth today.

Chris Smith

Amazing to think that the Spanish colonists were throwing the stuff away. That was Keele University's Katherine Haxton with the story of Platinum. Next week it's time to relive your schooldays.

Brian Clegg

If there were a competition for the chemical element mostly likely to generate schoolboy howlers, the winner would be germanium. It's inevitable that the substance with atomic number 32 is quite often described as a flowering plant with the common name cranesbill. Just one letter differentiates the flower geranium from the element germanium - an easy enough mistake.

You may like to say it with flowers and give someone a gift of a geranium - but you're more likely to communicate down a modern fibre optic phone line, and then it's germanium all the way.

Chris Smith

Indeed, and you can download Brian Clegg's tale of germanium, probably via a fibre optic too, because he'll be here next week for Chemistry in its Element. I'm Chris Smith, thank you for listening and goodbye.


Chemistry in its element is brought to you by the Royal Society of Chemistry and produced by There's more information and other episodes of Chemistry in its element on our website at

(End promo)
  Help text not available for this section currently
  Help Text


Description :
C5e Demonstrate that dissolving, mixing and change of state are reversible.
Description :
Education in Chemistry
Description :
The reaction between aluminium and iodine is catalysed by water. This is a spectacular demonstration as clouds of purple iodine vapour are produced.
Description :
FunKids radio, in collaboration with the RSC, has produced a set of short chemistry snippets introducing children to chemistry- the what, why and how.
Description :
This resource is designed to provide strategies for dealing with some of the misconceptions that students have in the form of ready-to-use classroom resources.
Description :
Find out more about the career of Christopher Page, a scientific associate in nuclear magnetic resonance spectroscopy. 

Terms & Conditions

Images © Murray Robertson 1999-2011
Text © The Royal Society of Chemistry 1999-2011

Welcome to "A Visual Interpretation of The Table of Elements", the most striking version of the periodic table on the web. This Site has been carefully prepared for your visit, and we ask you to honour and agree to the following terms and conditions when using this Site.

Copyright of and ownership in the Images reside with Murray Robertson. The RSC has been granted the sole and exclusive right and licence to produce, publish and further license the Images.

The RSC maintains this Site for your information, education, communication, and personal entertainment. You may browse, download or print out one copy of the material displayed on the Site for your personal, non-commercial, non-public use, but you must retain all copyright and other proprietary notices contained on the materials. You may not further copy, alter, distribute or otherwise use any of the materials from this Site without the advance, written consent of the RSC. The images may not be posted on any website, shared in any disc library, image storage mechanism, network system or similar arrangement. Pornographic, defamatory, libellous, scandalous, fraudulent, immoral, infringing or otherwise unlawful use of the Images is, of course, prohibited.

If you wish to use the Images in a manner not permitted by these terms and conditions please contact the Publishing Services Department by email. If you are in any doubt, please ask.

Commercial use of the Images will be charged at a rate based on the particular use, prices on application. In such cases we would ask you to sign a Visual Elements licence agreement, tailored to the specific use you propose.

The RSC makes no representations whatsoever about the suitability of the information contained in the documents and related graphics published on this Site for any purpose. All such documents and related graphics are provided "as is" without any representation or endorsement made and warranty of any kind, whether expressed or implied, including but not limited to the implied warranties of fitness for a particular purpose, non-infringement, compatibility, security and accuracy.

In no event shall the RSC be liable for any damages including, without limitation, indirect or consequential damages, or any damages whatsoever arising from use or loss of use, data or profits, whether in action of contract, negligence or other tortious action, arising out of or in connection with the use of the material available from this Site. Nor shall the RSC be in any event liable for any damage to your computer equipment or software which may occur on account of your access to or use of the Site, or your downloading of materials, data, text, software, or images from the Site, whether caused by a virus, bug or otherwise.

We hope that you enjoy your visit to this Site. We welcome your feedback.


Visual Elements images and videos
© Murray Robertson 1998–2017.



W. M. Haynes, ed., CRC Handbook of Chemistry and Physics, CRC Press/Taylor and Francis, Boca Raton, FL, 95th Edition, Internet Version 2015, accessed December 2014.
Tables of Physical & Chemical Constants, Kaye & Laby Online, 16th edition, 1995. Version 1.0 (2005), accessed December 2014.
J. S. Coursey, D. J. Schwab, J. J. Tsai, and R. A. Dragoset, Atomic Weights and Isotopic Compositions (version 4.1), 2015, National Institute of Standards and Technology, Gaithersburg, MD, accessed November 2016.
T. L. Cottrell, The Strengths of Chemical Bonds, Butterworth, London, 1954.


Uses and properties

John Emsley, Nature’s Building Blocks: An A-Z Guide to the Elements, Oxford University Press, New York, 2nd Edition, 2011.
Thomas Jefferson National Accelerator Facility - Office of Science Education, It’s Elemental - The Periodic Table of Elements, accessed December 2014.
Periodic Table of Videos, accessed December 2014.


Supply risk data

Derived in part from material provided by the British Geological Survey © NERC.


History text

Elements 1–112, 114, 116 and 117 © John Emsley 2012. Elements 113, 115, 117 and 118 © Royal Society of Chemistry 2017.



Produced by The Naked Scientists.


Periodic Table of Videos

Created by video journalist Brady Haran working with chemists at The University of Nottingham.
  • Download our free Periodic Table app for mobile phones and tablets.
  • App Store
  • Google play