Periodic Table > Bismuth
 

Terminology


Allotropes
Some elements exist in several different structural forms, these are called allotropes.


For more information on Murray Robertson’s image see Uses/Interesting Facts below.

 

Fact Box Terminology


Group
Elements appear in columns or ‘groups’ in the periodic table. Members of a group typically have similar properties and electron configurations in their outer shell.


Period
Elements are laid out into rows or ‘periods’ so that similar chemical behaviour is observed in columns.


Block
Elements are organised into blocks by the orbital type in which the outer electrons are found. These blocks are named for the characteristic spectra they produce: sharp, principal, diffuse, and fundamental.


Atomic Number
The number of protons in the nucleus.


Atomic Radius/non -bonded (Å)
based on Van der Waals forces (where several isotopes exist, a value is presented for the most prevalent isotope). These values were calculated using a multitude of methods including crystallographic data, gas kinetic collision cross sections, critical densities, liquid state properties, for more details please refer to the CRC Handbook of Chemistry and Physics.


Electron Configuration
The arrangements of electrons above the last (closed shell) noble gas.


Isotopes
Elements are defined by the number of protons in its centre (nucleus), whilst the number of neutrons present can vary. The variations in the number of neutrons will create elements of different mass which are known as isotopes.


Melting Point (oC)
The temperature at which the solid-liquid phase change occurs.


Melting Point (K)
The temperature at which the solid-liquid phase change occurs.


Melting Point (oF)
The temperature at which the solid-liquid phase change occurs.


Boiling Point (oC)
The temperature at which the liquid-gas phase change occurs.


Boiling Point (K)
The temperature at which the liquid-gas phase change occurs.


Boiling Point (oF)
The temperature at which the liquid-gas phase change occurs.


Sublimation
Elements that do not possess a liquid phase at atmospheric pressure (1 atm) are described as going through a sublimation process.


Density (kgm-3)
Density is the weight of a substance that would fill 1 m3 (at 298 K unless otherwise stated).


Relative Atomic Mass
The mass of an atom relative to that of Carbon-12. This is approximately the sum of the number of protons and neutrons in the nucleus. Where more than one isotope exists the value given is the abundance weighted average.


Key Isotopes (% abundance)
An element must by definition have a fixed number of protons in its nucleus, and as such has a fixed atomic number, however variants of an element can exist with differing numbers of neutrons, and hence a different atomic masses (e.g. 12C has 6 protons and 6 neutrons and 13C has 6 protons and 7 neutrons).


CAS number
The Chemical Abstracts Service registry number is a unique identifier of a particular chemical, designed to prevent confusion arising from different languages and naming systems (where several isotopes exist, a value is presented for the most prevalent isotope).

Fact Box

 
Group 15  Melting point 271.406 oC, 520.531 oF, 544.556 K 
Period Boiling point 1564 oC, 2847.2 oF, 1837.15 K 
Block Density (kg m-3) 9803 
Atomic number 83  Relative atomic mass 208.98  
State at room temperature Solid  Key isotopes 209Bi 
Electron configuration [Xe] 4f145d106s26p3  CAS number 7440-69-9 
ChemSpider ID 4514266 ChemSpider is a free chemical structure database
 

Interesting Facts terminology


Image Explanation

Murray Robertson is the artist behind the images which make up Visual Elements. This is where the artist explains his interpretation of the element and the science behind the picture.


Natural Abundance

Where this element is most commonly found in nature.


Biological Roles

The elements role within the body of humans, animals and plants. Also functionality in medical advancements both today and years ago.


Appearance

The description of the element in its natural form.

Uses / Interesting Facts

 
Image explanation
An alchemical symbol used to represent the element accompanied by various ancient chemistry apparatus.
Appearance
A high-density, silvery, pink-tinged metal, but not used as such as it is too brittle. Basic bismuth carbonate is taken in tablet or liquid form for indigestion as ‘bismuth mixture’. Bismuth (III) chloride oxide (BiClO) is used in cosmetics to give a pearly effect.
Source

Uses
Bismuth is used in low-melting alloys with tin and cadmium, which are used in products such as fire detectors and extinguishers, electric fuses and solders. Basic bismuth carbonate is taken in tablet or liquid form for indigestion as ‘bismuth mixture’. Bismuth (III) chloride oxide (BiClO) is used in cosmetics to give a pearly effect.
Biological role
Bismuth has no known biological role, and is non-toxic.
Natural abundance
Bismuth occurs as the native metal, and in ores such as bismuthinite and bismite. The major commercial source of bismuth is as a by-product of refining lead, copper, tin, silver and gold ores.
 
Atomic Data Terminology

Atomic radius/non -bonded (Å)
Based on Van der Waals forces (where several isotopes exist, a value is presented for the most prevalent isotope). These values were calculated using a multitude of methods including crystallographic data, gas kinetic collision cross sections, critical densities, liquid state properties,for more details please refer to the CRC Handbook of Chemistry and Physics.


Electron affinity (kJ mol-1)
The energy released when an additional electron is attached to the neutral atom and a negative ion is formed (where several isotopes exist, a value is presented for the most prevalent isotope). *


Electronegativity (Pauling scale)
The degree to which an atom attracts electrons towards itself, expressed on a relative scale as a function bond dissociation energies, Ed in eV. χA - χB =(eV)-1/2sqrt(Ed(AB)-[Ed(AA)+Ed(BB)]/2), with χH set as 2.2 (where several isotopes exist, a value is presented for the most prevalent isotope).


1st Ionisation energy (kJ mol-1)
The minimum energy required to remove an electron from a neutral atom in its ground state (where several isotopes exist, a value is presented for the most prevalent isotope).


Covalent radius (Å)
The size of the atom within a covalent bond, given for typical oxidation number and coordination (where several isotopes exist, a value is presented for the most prevalent isotope). ***

Atomic Data

 
Atomic radius, non-bonded (Å) 2.070 Covalent radius (Å) 1.5
Electron affinity (kJ mol-1) 90.892 Electronegativity
(Pauling scale)
1.900
Ionisation energies
(kJ mol-1)
 
1st
702.943
2nd
1611.593
3rd
2466.163
4th
4370.782
5th
5403.174
6th
8519.648
7th
-
8th
-
 

Mining/Sourcing Information

Data for this section of the data page has been provided by the British Geological Survey. To review the full report please click here or please look at their website here.


Key for numbers generated


Governance indicators

1 (low) = 0 to 2

2 (medium-low) = 3 to 4

3 (medium) = 5 to 6

4 (medium-high) = 7 to 8

5 (high) = 9


Reserve base distribution

1 (low) = 0 to 30 %

2 (medium-low) = 30 to 45 %

3 (medium) = 45 to 60 %

4 (medium-high) = 60 to 75 %

5 (high) = 75 %

(Where data are unavailable an arbitrary score of 2 was allocated. For example, Be, As, Na, S, In, Cl, Ca and Ge are allocated a score of 2 since reserve base information is unavailable. Reserve base data are also unavailable for coal; however, reserve data for 2008 are available from the Energy Information Administration (EIA).)


Production Concentration

1 (low) = 0 to 30 %

2 (medium-low) = 30 to 45 %

3 (medium) = 45 to 60 %

4 (medium-high) = 60 to 75 %

5 (high) = 75 %


Crustal Abundance

1 (low) = 100 to 1000 ppm

2 (medium-low) =10 to 100 ppm

3 (medium) = 1 to 10 ppm

4 (medium-high) = 0.1 to 1 ppm

5 (high) = 0.1 ppm

(Where data are unavailable an arbitrary score of 2 was allocated. For example, He is allocated a score of 2 since crustal abundance data is unavailable.)


Explanations for terminology


Crustal Abundance (ppm)

The abundance of an element in the Earth's crust in parts-per-million (ppm) i.e. The number of atoms of this element per 1 million atoms of crust.


Sourced

The country with the largest reserve base.


Reserve Base Distribution

This is a measure of the spread of future supplies, recording the percentage of a known resource likely to be available in the intermediate future (reserve base) located in the top three countries.


Production Concentrations

This reports the percentage of an element produced in the top three countries. The higher the value, the larger risk there is to supply.


Total Governance Factor

The World Bank produces a global percentile rank of political stability. The scoring system is given below, and the values for all three production countries were summed.


Relative Supply Risk Index

The Crustal Abundance, Reserve Base Distribution, Production Concentration and Governance Factor scores are summed and then divided by 2, to provide an overall Relative Supply Risk Index.

Supply Risk

 
Scarcity factor 7.0
Country with largest reserve base China
Crustal abundance (ppm) 0.18
Leading producer China
Reserve base distribution (%) 69.10
Production concentration (%) 40.00
Total governance factor(production) 7
Top 3 countries (mined)
  • 1) China
  • 2) Peru
  • 3) Canada
Top 3 countries (production)
  • 1) China
  • 2) Mexico
  • 3) Kazakhstan
 

Oxidation states/ Isotopes


Key for Isotopes


Half Life
  y years
  d days
  h hours
  m minutes
  s seconds
Mode of decay
  α alpha particle emission
  β negative beta (electron) emission
  β+ positron emission
  EC orbital electron capture
  sf spontaneous fission
  ββ double beta emission
  ECEC double orbital electron capture

Terminology


Common Oxidation states
The oxidation state of an atom is a measure of the degree of oxidation of an atom. It is defined as being the charge that an atom would have if all bonds were ionic. Free atoms have an oxidation state of 0, and the sum of oxidation numbers within a substance must equal the overall charge.


Important Oxidation states
The most common oxidation states of an element in its compounds.


Isotopes
Elements are defined by the number of protons in its centre (nucleus), whilst the number of neutrons present can vary. The variations in the number of neutrons will create elements of different mass which are known as isotopes.

Oxidation States / Isotopes

 
Common oxidation states 5, 3
Isotopes Isotope Atomic mass Natural abundance (%) Half life Mode of decay
  209Bi 208.98 100 1.9 x 1019 α 
 

Pressure and Temperature - Advanced Terminology


Molar Heat Capacity (J mol-1 K-1)

Molar heat capacity is the energy required to heat a mole of a substance by 1 K.


Young's modulus (GPa)

Young's modulus is a measure of the stiffness of a substance, that is, it provides a measure of how difficult it is to extend a material, with a value given by the ratio of tensile strength to tensile strain.


Shear modulus (GPa)

The shear modulus of a material is a measure of how difficult it is to deform a material, and is given by the ratio of the shear stress to the shear strain.


Bulk modulus (GPa)

The bulk modulus is a measure of how difficult to compress a substance. Given by the ratio of the pressure on a body to the fractional decrease in volume.


Vapour Pressure (Pa)

Vapour pressure is the measure of the propensity of a substance to evaporate. It is defined as the equilibrium pressure exerted by the gas produced above a substance in a closed system.

Pressure / Temperature - Advanced

 
Molar heat capacity
(J mol-1 K-1)
25.52 Young's modulus (GPa) 31.9
Shear modulus (GPa) 12 Bulk modulus (GPa) 31.3
Vapour pressure  
Temperature (K)
400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
Pressure (Pa)
- - - - - - - - - - -
  Help text not available for this section currently

History

Bismuth was discovered by an unknown alchemist around 1400 AD. Later that century it was alloyed with lead to make cast type for printers and decorated caskets were being crafted in the metal. Bismuth was often confused with lead; it was likewise a heavy metal and melted at a relatively low temperature making it easy to work. Georgius Agricola in the early 1500s speculated that it was a distinctly different metal, as did Caspar Neuman in the early 1700s, but proof that it was so finally came in 1753 thanks to the work of Claude-François Geoffre.


Bismuth was used as an alloying metal in the bronze of the Incas of South America around 1500 AD. Bismuth was not mined as ore but appears to have occurred as the native metal.

  Help text not available for this section currently

Podcasts

Listen to Bismuth Podcast
Transcript :

Chemistry in Its Element - Bismuth


(Promo)

 

You're listening to Chemistry in its element brought to you by Chemistry World, the magazine of the Royal Society of Chemistry.

 

(End promo)

 

Chris Smith

Hello! This time we're turning to the tale of the element that held the key to masking a sun tan, provided engineers with safety valves for their boilers, could make spoons vanish in a hot cup of Victorian tea and continues to cure stomach upsets today. With the story of this remarkable metal, here is Andrea Sella.

 

Andrea Sella

Bismuth, A few months ago I was struck by a mad but irresistible impulse to cast a bell. A friend of mine lent me a template and I headed out to Tiranti, one of the best sculpting supply shops in London. With an inviting blue entrance, the shelves are cramped with bottles and tins of resins, polymers and initiators. There are tubs of clay anatomical models, trays of weird implements and books that explain how to make silicon moulds of your extremities. I explained to the young woman behind the counter what I wanted to do and she took me to the silicon resin section where she selected some bottles. I was about to pay for my goodies when my eye was drawn to the next shelf. Stacked in neat piles were clear plastic bags of shiny metal slabs. I picked up a pack and was immediately struck by the weight. Bismuth, the woman said, it casts really well and it's a lot less toxic than lead. I left the shop with a bag of that as well. 

 

Bismuth is without doubt a heavy metal; It occurs so low in the periodic table many were puzzled by the fact that it didn't seem radioactive. In fact its major isotope Bismuth 219 was predicted to be so back in 1949. But it wasn't until 55 years later, when the French physicists finally observed its decay. It has a half of life of 2*1019 years, I would round off as the same as eternity so. The density of the metal is 9.8, little less than lead but like water, the solid expands as it freezes and it floats on the liquid. It can melt quite easily and it can grow stunning little ziggurat like crystals by cooling it slowly from melt. It is easy. Heat some Bismuth in an iron ladle or porcelain bowl using a sand bath and a Bunsen burner until it melts. This happens at just 271 degree Celsius. Then turn OFF the burner so that the metal cools very slowly and when the metal freezes over at the top poke two holes in the solid surface and then pour out the remaining liquid and then leave everything to cool at room temperature. If you now break open the metal mass you will find gorgeous stepped cubes of Bismuth with a faintly pink iridescent sheen to them, a colour which arises from the thin layer of oxide that coats the metal. Just be careful, the metal is quite brittle and your precious cubes will shatter if dropped. 

 

Bismuth itself is not very reactive; it is sometime found in ore deposits as the native metal. But surprisingly there is little evidence that it was known to the ancients. Aristotle doesn't list it among his seven metals and Pliny is silent on the matter. Only the Incas seem to be aware of it. The handle of a llama-headed knife found at Machu Picchu is fashioned from a bronze which is 18% Bismuth, which sounds like rather more than an accident. Reliable description of Bismuth only appeared in Europe in the 15th Century. It began to be mined in Schneeberg around 1460 and the metal soon started to be used as a kind of silvery ink or pigment which gave rise to a craze called Wismuth Malerei, Bismuth painting. Painters in Italy including Raphael used both Bismuth metal and Bismuthinite, Bismuth trisulphide in their work. But what was it the alchemist Basil Valentine rather confused things by calling it Wismut, White lead. Others thought it was a kind of tin, Stannum Glaciale or étain de glace, icy tin which the French chemist Nicolas Lemery said sniffily in 1697, was just a derivative of tin prepared by the English. Eventually however the mists cleared. And by early 19th century, John Dalton listed it amongst his atomic symbols as a circle around a capital letter B. Only then was its chemistry systematically explored particularly by the Swedish chemist Berzelius. For example if you dissolved Bismuth in Nitric acid and then poured the solution into water a brilliant white flaky material precipitates, Pearl white, the basic nitrate which from the 18th century was used in cosmetics to whiten the complexion, anything not to look like someone who worked in the sun.   French druggist called it blanc de Perle. It had one disadvantage, however. In polluted cities, it had a tendency to pick up sulphur from the air turning the wear a rather bizarre browner shade. But because of its basic properties, the nitrate began to be given for upset stomachs often when mixed with milk of magnesia. Eventually this was superseded by its complex with salicylic acid, that pink sloth called pepto-bismol, a clever combination of a weak inorganic base and an organic anti inflammatory.

 

But Bismuth's role in metallurgy has us always intrigued. It has been used extensively to make low melting alloys being added to Pewter, the alloy of lead and tin to adjust its melting point or to antimony to make type metal, once used in printing presses. Alloys containing bismuth were used for safety valves and boilers, melting if the temperature rose too high and a classic prank invented in Victorian times was to cast spoons from an alloy containing 8 parts Bismuth, 5 parts lead and 3 parts tin. Its melting point is low enough for the spoon to vanish into a cup of hot tea to the astonishment of the unsuspecting visitor. So what am I going to do with my Bismuth ingots, perhaps I'll cast a few spoons before I have a go at the bell.

 

Chris Smith

Budding chemist and would be campanologist, Andrea Sella. Next time to the element that gives rise to a girl's best friend, but ladies just know where it really comes from first. 

 

Katherine Holt 

It is possible to make any carbon based material into a diamond including hair and even cremated remains. Yes you can turn your dearly departed pet into diamond if you want to. These artificial diamonds are chemically and physically identical to the natural stones and they come without the ethical baggage. However psychologically there remains a barrier, if he really loves you, wouldn't he buy you a real diamond. 

 

Chris Smith

Indeed and Katherine Holt would be explaining why diamonds really are forever on next time's Chemistry in its element. I do hope you can join us. I'm Chris Smith thank you for listening and good bye.

 

(Promo)

 

Chemistry in its elementbrought to you by the Royal society of chemistry and produced by thenakedscientists dot com. There's more information and other episodes of chemistry in its element on our website at chemistryworld dot org forward slash elements. 

 

(End promo)

 

  Help text not available for this section currently
  Help Text

Resources

Description :
In this experiment the pH of various oxides is tested.
Description :
Many elements react with oxygen on heating. These reactions and the properties of their products illustrate the periodic nature of the elements.
Description :
We discover how to extract lead from lead(II) oxide. We mix lead(II) oxide with charcoal powder and then heat the mixture using a Bunsen burner. It glows bright red as a reaction occurs and after a fe...
Learn Chemistry: Your single route to hundreds of free-to-access chemistry teaching resources.
 

Terms & Conditions


Images © Murray Robertson 1999-2011
Text © The Royal Society of Chemistry 1999-2011

Welcome to "A Visual Interpretation of The Table of Elements", the most striking version of the periodic table on the web. This Site has been carefully prepared for your visit, and we ask you to honour and agree to the following terms and conditions when using this Site.


Copyright of and ownership in the Images reside with Murray Robertson. The RSC has been granted the sole and exclusive right and licence to produce, publish and further license the Images.


The RSC maintains this Site for your information, education, communication, and personal entertainment. You may browse, download or print out one copy of the material displayed on the Site for your personal, non-commercial, non-public use, but you must retain all copyright and other proprietary notices contained on the materials. You may not further copy, alter, distribute or otherwise use any of the materials from this Site without the advance, written consent of the RSC. The images may not be posted on any website, shared in any disc library, image storage mechanism, network system or similar arrangement. Pornographic, defamatory, libellous, scandalous, fraudulent, immoral, infringing or otherwise unlawful use of the Images is, of course, prohibited.


If you wish to use the Images in a manner not permitted by these terms and conditions please contact the Publishing Services Department by email. If you are in any doubt, please ask.


Commercial use of the Images will be charged at a rate based on the particular use, prices on application. In such cases we would ask you to sign a Visual Elements licence agreement, tailored to the specific use you propose.


The RSC makes no representations whatsoever about the suitability of the information contained in the documents and related graphics published on this Site for any purpose. All such documents and related graphics are provided "as is" without any representation or endorsement made and warranty of any kind, whether expressed or implied, including but not limited to the implied warranties of fitness for a particular purpose, non-infringement, compatibility, security and accuracy.


In no event shall the RSC be liable for any damages including, without limitation, indirect or consequential damages, or any damages whatsoever arising from use or loss of use, data or profits, whether in action of contract, negligence or other tortious action, arising out of or in connection with the use of the material available from this Site. Nor shall the RSC be in any event liable for any damage to your computer equipment or software which may occur on account of your access to or use of the Site, or your downloading of materials, data, text, software, or images from the Site, whether caused by a virus, bug or otherwise.


We hope that you enjoy your visit to this Site. We welcome your feedback.

References

 
Images:  Visual Elements © Murray Robertson 2011
Mining and Sourcing data:  British Geological Survey – natural environment research council.
Text:  John Emsley Nature’s Building Blocks: An A-Z Guide to the Elements, Oxford University Press, 2nd Edition, 2011.
Additional information for platinum, gold, neodymium and dysprosium obtained from Material Value Consultancy Ltd www.matvalue.com
Data: CRC Handbook of Chemistry and Physics, CRC Press, 92nd Edition, 2011.
G. W. C. Kaye and T. H. Laby Tables of Physical and Chemical Constants, Longman, 16th Edition, 1995.
Members of the RSC can access these books through our library.