John B Goodenough Award

The John B Goodenough Award is to recognise exceptional and sustained contributions to the area of materials chemistry.

2019 Winner

Professor Clare Grey

2019 John B Goodenough Award Winner

Professor Clare Grey, University of Cambridge

General information

  • Run biennially - Closed
  • The winner receives 2000, a medal and a certificate
  • The winner will complete a UK lecture tour 
  • The winner will be chosen by the Materials Chemistry Division Awards Committee 

Guidelines for Nominators

  • Only RSC Members can nominate for this award
  • Nominees may NOT nominate themselves
  • Open to nominees who have spent an appreciable part of their career working in the UK or Republic of Ireland 
  • When nominating previous RSC prize or award winners, please remember that a person cannot be awarded twice for substantially the same body of work      

To make a nomination please use our online awards nominations system  to submit the following:

  • Your name, contact details, and membership number (please contact the RSC Membership team if you do not know your membership details)
  • The nominee's name and contact details 
  • An up to date CV for the nominee (no longer than one A4 side, 11pt text) which should include a summary of their education and career, a list of 5 relevant publications, total numbers of publications and patents (if appropriate) and website URL if relevant
  • A supporting statement (up to 4500 characters, not including spaces) addressing the selection criteria 
  • A short citation describing what the nominee should be awarded for. This must be no longer than 250 characters (not including spaces) and ideally no longer than one sentence 
  • References are not required for this award and will not be accepted   

The RSC reserves the right to rescind any Prize or Award if there is reasonable grounds to do so. All nominators will be asked to confirm that, to the best of their knowledge, there is no confirmed or potential impediment to their nominee receiving this prize/award related to their professional standing. Our Professional Practice and Code of Conduct can be referred to as a guide on expected standards.

Downloadable Files

PDF files require Link icon Adobe Acrobat Reader

Selection Criteria for RSC Awards

Our selection committees base their evaluations primarily on the overall quality of relevant contributions made by nominees and not simply on quantitative measures.

The selection committee(s) will consider the following aspects of all nominations for scientific research Awards as appropriate:

  • Originality of research
  • Impact of research
  • Quality of publications and/or patents and/or software
  • Innovation
  • Professional standing
  • Collaborations and teamwork
  • Other indicators of esteem indicated by the nominee/nominator    

Materials Chemistry Division Awards Committee

  • Milo Shaffer, Imperial College London (Chair) 
  • Ian Hamley, University of Reading
  • Derek Sinclair, University of Sheffield
  • Peter Skabara, University of Glasgow
  • Charlotte Williams, University of Oxford
  • Emma Kendrick, University of Birmingham            

Previous Winners

John B Goodenough Award Previous Winners

2009 - present

History of the Award

John B Goodenough
Established in 2008 the John B Goodenough Award (previously advertised as the Materials Chemistry Forum Lifetime Award) recognises the work of John Bannister Goodenough who helped develop the first RAM (random-access memory) of the digital computer.

Goodenough received a degree in Mathematics at Yale whilst serving in the U.S. army air force. He went on to become a research scientist and group leader at MIT Lincoln Laboratory for 24 years. During this time Goodenough made significant contributions to the development of the first RAM.  He formulated the concept of cooperative orbital ordering to remove d-orbital degeneracy; the resulting crystallographic distortions are Jahn-Teller distortions.

Goodenough also recognized that short-range orbital ordering built in chemical inhomogeneities that enabled control of the magnetic B-H loop for ferrospinel memory cores. He applied the concept of cooperative orbital order to account for the anisotropic magnetic order in the system La1-xCaxMnO3, and formulated the rules for the sign of the spin-spin interactions - the Goodenough-Kanamori rules. In the 1960s, his exploration of the transition from localized to itinerant d-electron behaviour not only resolved the origin of the metallic conductivity found in some perovskites, but also led to his recognition that this transition is first-order and is evident in charge-density waves.

Termination by Congress of such fundamental studies at Lincoln Laboratory led Goodenough to explore energy materials as Professor and Head of the Inorganic Chemistry Laboratory, University of Oxford, where he developed layered and spinel oxides as cathodes for the Li rechargeable battery. SONY, of Japan, adopted his layered Li1-xCoO2 cathode to launch the cell telephone and laptop computer initiating the "wireless revolution".

On retirement from Oxford Goodenough joined the Cockrell School of Engineering at the University of Texas, Austin.  His work informs the design of new technical materials with investigations into the relationship between the chemical, structural and electrical properties of solids.  Recently he has identified a ceramic anode material for a solid oxide fuel cell operating on natural gas.  His work has gained wide recognition, including through receipt of the Japan Prize (2001) and the Presidential Enrico Fermi Award (2009).

Contact and Further Information

Royal Society of Chemistry, Thomas Graham House, Cambridge Science Park, Milton Road, Cambridge, CB4 0WF
Tel: +44 (0)1223 420066