Some elements exist in several different structural forms, called allotropes. Each allotrope has different physical properties.

For more information on the Visual Elements image see the Uses and properties section below.



A vertical column in the periodic table. Members of a group typically have similar properties and electron configurations in their outer shell.

A horizontal row in the periodic table. The atomic number of each element increases by one, reading from left to right.

Elements are organised into blocks by the orbital type in which the outer electrons are found. These blocks are named for the characteristic spectra they produce: sharp (s), principal (p), diffuse (d), and fundamental (f).

Atomic number
The number of protons in an atom.

Electron configuration
The arrangements of electrons above the last (closed shell) noble gas.

Melting point
The temperature at which the solid–liquid phase change occurs.

Boiling point
The temperature at which the liquid–gas phase change occurs.

The transition of a substance directly from the solid to the gas phase without passing through a liquid phase.

Density (g cm−3)
Density is the mass of a substance that would fill 1 cm3 at room temperature.

Relative atomic mass
The mass of an atom relative to that of carbon-12. This is approximately the sum of the number of protons and neutrons in the nucleus. Where more than one isotope exists, the value given is the abundance weighted average.

Atoms of the same element with different numbers of neutrons.

CAS number
The Chemical Abstracts Service registry number is a unique identifier of a particular chemical, designed to prevent confusion arising from different languages and naming systems.

Fact box

Group Lanthanides  Melting point 931°C, 1708°F, 1204 K 
Period Boiling point 3520°C, 6368°F, 3793 K 
Block Density (g cm−3) 6.77 
Atomic number 59  Relative atomic mass 140.908  
State at 20°C Solid  Key isotopes 141Pr 
Electron configuration [Xe] 4f36s2  CAS number 7440-10-0 
ChemSpider ID 22384 ChemSpider is a free chemical structure database


Image explanation

Murray Robertson is the artist behind the images which make up Visual Elements. This is where the artist explains his interpretation of the element and the science behind the picture.


The description of the element in its natural form.

Biological role

The role of the element in humans, animals and plants.

Natural abundance

Where the element is most commonly found in nature, and how it is sourced commercially.

Uses and properties

Image explanation
The symbol is one commonly used for the astrological birth sign of Gemini (‘the twins’). The green colour, together with this symbol, reflects the origin of the element’s name, from the Greek ‘prasinos’, meaning ‘green’, and ‘didymos’, meaning ‘twin’.
A soft, silvery metal.
Praseodymium is used in a variety of alloys. The high-strength alloy it forms with magnesium is used in aircraft engines. Mischmetal is an alloy containing about 5% praseodymium and is used to make flints for cigarette lighters. Praseodymium is also used in alloys for permanent magnets.

Along with other lanthanide elements, it is used in carbon arc electrodes for studio lighting and projection.

Praseodymium salts are used to colour glasses, enamel and glazes an intense and unusually clean yellow. Praseodymium oxide is a component of didymium glass (along with neodymium). This glass is used in goggles used by welders and glassmakers, because it filters out the yellow light and infrared (heat) radiation.
Biological role
Praseodymium has no known biological role. It has low toxicity.
Natural abundance
Praseodymium occurs along with other lanthanide elements in a variety of minerals. The two principal sources are monazite and bastnaesite. It is extracted from these minerals by ion exchange and solvent extraction.

Praseodymium metal is prepared by reducing anhydrous chloride with calcium.
  Help text not available for this section currently


Didymium was announced in 1841 by Carl Mosander. He separated if from cerium, along with lanthanum. Didymium was accepted as an element for more than 40 years but it was really a mixture of lanthanoid elements. Some chemists wondered whether didymium too might consist of more than one element, and their suspicions were confirmed when Bohuslav Brauner of Prague in 1882 showed that its atomic spectrum was not that of a pure metal. The Austrian chemist, Carl Auer von Welsbach took up the challenge and in June 1885 he succeeded in splitting didymium into its two components, neodymium and praseodymium, which he obtained as their oxides.

A pure sample of praseodymium metal itself was first produced in 1931.

Atomic radius, non-bonded
Half of the distance between two unbonded atoms of the same element when the electrostatic forces are balanced. These values were determined using several different methods.

Covalent radius
Half of the distance between two atoms within a single covalent bond. Values are given for typical oxidation number and coordination.

Electron affinity
The energy released when an electron is added to the neutral atom and a negative ion is formed.

Electronegativity (Pauling scale)
The tendency of an atom to attract electrons towards itself, expressed on a relative scale.

First ionisation energy
The minimum energy required to remove an electron from a neutral atom in its ground state.

Atomic data

Atomic radius, non-bonded (Å) 2.40 Covalent radius (Å) 1.90
Electron affinity (kJ mol−1) 92.819 Electronegativity
(Pauling scale)
Ionisation energies
(kJ mol−1)


Common oxidation states

The oxidation state of an atom is a measure of the degree of oxidation of an atom. It is defined as being the charge that an atom would have if all bonds were ionic. Uncombined elements have an oxidation state of 0. The sum of the oxidation states within a compound or ion must equal the overall charge.


Atoms of the same element with different numbers of neutrons.

Key for isotopes

Half life
  y years
  d days
  h hours
  m minutes
  s seconds
Mode of decay
  α alpha particle emission
  β negative beta (electron) emission
  β+ positron emission
  EC orbital electron capture
  sf spontaneous fission
  ββ double beta emission
  ECEC double orbital electron capture

Oxidation states and isotopes

Common oxidation states 4, 3
Isotopes Isotope Atomic mass Natural abundance (%) Half life Mode of decay
  141Pr 140.908 100


Data for this section been provided by the British Geological Survey.

Relative supply risk

An integrated supply risk index from 1 (very low risk) to 10 (very high risk). This is calculated by combining the scores for crustal abundance, reserve distribution, production concentration, substitutability, recycling rate and political stability scores.

Crustal abundance (ppm)

The number of atoms of the element per 1 million atoms of the Earth’s crust.

Recycling rate

The percentage of a commodity which is recycled. A higher recycling rate may reduce risk to supply.


The availability of suitable substitutes for a given commodity.
High = substitution not possible or very difficult.
Medium = substitution is possible but there may be an economic and/or performance impact
Low = substitution is possible with little or no economic and/or performance impact

Production concentration

The percentage of an element produced in the top producing country. The higher the value, the larger risk there is to supply.

Reserve distribution

The percentage of the world reserves located in the country with the largest reserves. The higher the value, the larger risk there is to supply.

Political stability of top producer

A percentile rank for the political stability of the top producing country, derived from World Bank governance indicators.

Political stability of top reserve holder

A percentile rank for the political stability of the country with the largest reserves, derived from World Bank governance indicators.

Supply risk

Relative supply risk 9.5
Crustal abundance (ppm) 0.3
Recycling rate (%) <10
Substitutability High
Production concentration (%) 97
Reserve distribution (%) 50
Top 3 producers
  • 1) China
  • 2) Russia
  • 3) Malaysia
Top 3 reserve holders
  • 1) China
  • 2) CIS Countries (inc. Russia)
  • 3) USA
Political stability of top producer 24.1
Political stability of top reserve holder 24.1


Specific heat capacity (J kg−1 K−1)

Specific heat capacity is the amount of energy needed to change the temperature of a kilogram of a substance by 1 K.

Young's modulus

A measure of the stiffness of a substance. It provides a measure of how difficult it is to extend a material, with a value given by the ratio of tensile strength to tensile strain.

Shear modulus

A measure of how difficult it is to deform a material. It is given by the ratio of the shear stress to the shear strain.

Bulk modulus

A measure of how difficult it is to compress a substance. It is given by the ratio of the pressure on a body to the fractional decrease in volume.

Vapour pressure

A measure of the propensity of a substance to evaporate. It is defined as the equilibrium pressure exerted by the gas produced above a substance in a closed system.

Pressure and temperature data – advanced

Specific heat capacity
(J kg−1 K−1)
193 Young's modulus (GPa) 37.3
Shear modulus (GPa) 14.8 Bulk modulus (GPa) 28.8
Vapour pressure  
Temperature (K)
400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
Pressure (Pa)
- - - 1.95
x 10-8
x 10-5
0.00257 0.0904 1.44 13.2 80.8 -
  Help text not available for this section currently


Listen to Praseodymium Podcast
Transcript :

Chemistry in its element: praseodymium


You're listening to Chemistry in its element brought to you by Chemistry World, the magazine of the Royal Society of Chemistry.

(End promo)

Chris Smith

Hello, two for the price of one this week. Here's Andrea Sella.

Andrea Sella

As a graduate student I used to seal off NMR samples under vacuum. As the glass was heated by the torch, the flame would blaze with the fierce orange glow of the sodium lurking in the pyrex. It was all the glassblowing I could do. Anything more serious required a trip down to the ground floor to see our wizard glassblower, Geoffrey Wilkinson, a lovable rogue from the Black Country with an infectious laugh, and wit was as sharp as a razor.

One day, as he stood at his lathe with an orange inferno raging before him I asked him about the glasses he was wearing. "Didymium" he answered cryptically, and then noticing my blank look, he added "Cuts out the light. Try them." He passed me his specs, the lenses of a curious greeny-grey colour. I slipped them on and suddenly the flame was gone. All I could see was a red-hot piece of spinning glass unobscured by the glare. I gawped in wonder until Geoff pulled the specs off my face saying "Give 'em back ya fool" and went back to his work.

Didymium is not a name you will often find in textbooks these days. It is the name of a pair of elements which lie next to each other in the lanthanide or rare earth series - what used to be the Wild West of the periodic table. The fourteen elements that constitute the series are remarkable for their similarity. Nowhere else does one find a group of elements that so resemble each other in their chemical properties. Hence these elements proved incredibly difficult to separate from each other and purify. And to make matters worse, unlike other metals, the colours of rare earth metal compounds were pale changed little from one compound to the next, making it even harder to work out whether your material was pure. Amongst the many claims for the discovery of new elements was a report in 1839 by the Swedish chemist Carl Gustav Mosander of a supposed element he called "Didymium" - after the Greek word for twin.

The invention of spectroscopy by Gustov Kirchoff and Robert Bunsen (yup, he of the Bunsen burner) now came into its own. It was soon realized that the spectre of the rare earths were very characteristic, with sharp gas-phase-like lines both in the solid and solution. At last there was a means of establishing purity.

Bunsen, who, by the 1870s, was the world's leading authority on the spectroscopy of the rare earths set this element as a problem for one of his students Carl Auer, who began to carry out the hundreds of fractional crystallizations necessary to get it pure. By 1885 it was clear that Auer had not one but two elements on his hands - a bluish lilac one he called "Neodymium", the new twin - and a green one he named "Praseodymium" - the green twin, each with their own spectra which summed together were the same as those of Mosander's material. Bunsen was delighted and immediately gave his approval to his student's work.

But it would not be until the 1940s before fast and effective methods for the separation of the lanthanides would be developed. Rather than the series of excruciatingly tedious crystallizations, the American chemists led by Frank Spedding described ion exchange methods and then within a few years solvent extraction became prevalent and produced kilogram quantities of these elements. Suddenly, commercial applications became a real prospect.

Because the ions themselves have unpaired electrons, their magnetic properties have proved fascinating to scientists and lucrative to entrepreneurs. An alloy of neodymium, iron and boron discovered in the 1980s is ferromagnetic, yielding permanent magnets over 1000 times stronger than anything ever seen before. Neodymium ion borade magnets have not only found their way into almost billions of electric motors and electronic devices around the world but also into wonderful toys for children.

On the other hand, the sharp spectral lines that so fascinated Bunsen and generations of spectroscopists since, imply very precise electronic states. Embedding neodymium into synthetic gemstones such as garnet resulted in the Neodymium:YAG laser, the workhorse of industrial laser cutting tools with its brilliant infrared lines. Your personalised iPod was probably engraved with a YAG. Coupled with a frequency doubling crystal a YAG gives us the bright green laser pointer than some lecturers like to show off with.

But some lateral thinking in the 1940s by chemists at Corning Glassworks in the US gave the invention that changed glassblowing forever. Someone spotted that both praseodymium and neodymium had absorption lines corresponding almost exactly with that annoyingly brilliant orange sodium line. Corning began producing "Didymium glass" which acts as an optical notch filter to cut out the glare and effect remains as astonishing to me today as it was the first time I saw it. When, a few years ago, one of our glassblowers here at UCL retired, he phoned me up on his last day. "I have something for you," he said mysteriously. I went down to the basement and shook his hand to wish him well. And then, to my delight, he handed me his specs. "Didymium," he said, "You'll need these."

Chris Smith

Andrea Sella with the story of didymium, two elements rolled into one. And Andrea is back next week with a taste of a metal that melts in your mouth and possibly also in your hands.

Andrea Sella

But I'm sure you really want to know is, if this really is the M & M element, what does it taste like? I knew you would ask. So I had a quick lick a couple of days back and the answer is it doesn't actually taste of very much to be honest. There's a faintly astringent and metallic taste which lingers on your tongue for few hours. And when it is molten, sorry I'll leave that experiment for someone more intrepid than I.

Chris Smith

And you can catch the story of gallium, which is what he was eating, with Andrea Sella on next week's Chemistry in its element, that's of course assuming that his element eating antics haven't poisoned him in the meantime. I'm Chris Smith, thank you for listening and goodbye.


Chemistry in its element is brought to you by the Royal Society of Chemistry and produced by There's more information and other episodes of Chemistry in its element on our website at

(End promo)
  Help text not available for this section currently
  Help Text


Learn Chemistry: Your single route to hundreds of free-to-access chemistry teaching resources.

Terms & Conditions

Images © Murray Robertson 1999-2011
Text © The Royal Society of Chemistry 1999-2011

Welcome to "A Visual Interpretation of The Table of Elements", the most striking version of the periodic table on the web. This Site has been carefully prepared for your visit, and we ask you to honour and agree to the following terms and conditions when using this Site.

Copyright of and ownership in the Images reside with Murray Robertson. The RSC has been granted the sole and exclusive right and licence to produce, publish and further license the Images.

The RSC maintains this Site for your information, education, communication, and personal entertainment. You may browse, download or print out one copy of the material displayed on the Site for your personal, non-commercial, non-public use, but you must retain all copyright and other proprietary notices contained on the materials. You may not further copy, alter, distribute or otherwise use any of the materials from this Site without the advance, written consent of the RSC. The images may not be posted on any website, shared in any disc library, image storage mechanism, network system or similar arrangement. Pornographic, defamatory, libellous, scandalous, fraudulent, immoral, infringing or otherwise unlawful use of the Images is, of course, prohibited.

If you wish to use the Images in a manner not permitted by these terms and conditions please contact the Publishing Services Department by email. If you are in any doubt, please ask.

Commercial use of the Images will be charged at a rate based on the particular use, prices on application. In such cases we would ask you to sign a Visual Elements licence agreement, tailored to the specific use you propose.

The RSC makes no representations whatsoever about the suitability of the information contained in the documents and related graphics published on this Site for any purpose. All such documents and related graphics are provided "as is" without any representation or endorsement made and warranty of any kind, whether expressed or implied, including but not limited to the implied warranties of fitness for a particular purpose, non-infringement, compatibility, security and accuracy.

In no event shall the RSC be liable for any damages including, without limitation, indirect or consequential damages, or any damages whatsoever arising from use or loss of use, data or profits, whether in action of contract, negligence or other tortious action, arising out of or in connection with the use of the material available from this Site. Nor shall the RSC be in any event liable for any damage to your computer equipment or software which may occur on account of your access to or use of the Site, or your downloading of materials, data, text, software, or images from the Site, whether caused by a virus, bug or otherwise.

We hope that you enjoy your visit to this Site. We welcome your feedback.


Visual Elements images and videos
© Murray Robertson 1998-2017.



W. M. Haynes, ed., CRC Handbook of Chemistry and Physics, CRC Press/Taylor and Francis, Boca Raton, FL, 95th Edition, Internet Version 2015, accessed December 2014.
Tables of Physical & Chemical Constants, Kaye & Laby Online, 16th edition, 1995. Version 1.0 (2005), accessed December 2014.
J. S. Coursey, D. J. Schwab, J. J. Tsai, and R. A. Dragoset, Atomic Weights and Isotopic Compositions (version 4.1), 2015, National Institute of Standards and Technology, Gaithersburg, MD, accessed November 2016.
T. L. Cottrell, The Strengths of Chemical Bonds, Butterworth, London, 1954.


Uses and properties

John Emsley, Nature’s Building Blocks: An A-Z Guide to the Elements, Oxford University Press, New York, 2nd Edition, 2011.
Thomas Jefferson National Accelerator Facility - Office of Science Education, It’s Elemental - The Periodic Table of Elements, accessed December 2014.
Periodic Table of Videos, accessed December 2014.


Supply risk data

Derived in part from material provided by the British Geological Survey © NERC.


History text

Elements 1-112, 114, 116 and 117 © John Emsley 2012. Elements 113, 115, 117 and 118 © Royal Society of Chemistry 2017.



Produced by The Naked Scientists.


Periodic Table of Videos

Created by video journalist Brady Haran working with chemists at The University of Nottingham.
Download our free Periodic Table app for mobile phones and tablets. App store Google play