Some elements exist in several different structural forms, called allotropes. Each allotrope has different physical properties.

For more information on the Visual Elements image see the Uses and properties section below.



A vertical column in the periodic table. Members of a group typically have similar properties and electron configurations in their outer shell.

A horizontal row in the periodic table. The atomic number of each element increases by one, reading from left to right.

Elements are organised into blocks by the orbital type in which the outer electrons are found. These blocks are named for the characteristic spectra they produce: sharp (s), principal (p), diffuse (d), and fundamental (f).

Atomic number
The number of protons in an atom.

Electron configuration
The arrangements of electrons above the last (closed shell) noble gas.

Melting point
The temperature at which the solid–liquid phase change occurs.

Boiling point
The temperature at which the liquid–gas phase change occurs.

The transition of a substance directly from the solid to the gas phase without passing through a liquid phase.

Density (g cm−3)
Density is the mass of a substance that would fill 1 cm3 at room temperature.

Relative atomic mass
The mass of an atom relative to that of carbon-12. This is approximately the sum of the number of protons and neutrons in the nucleus. Where more than one isotope exists, the value given is the abundance weighted average.

Atoms of the same element with different numbers of neutrons.

CAS number
The Chemical Abstracts Service registry number is a unique identifier of a particular chemical, designed to prevent confusion arising from different languages and naming systems.

Fact box

Group 15  Melting point 271.406°C, 520.531°F, 544.556 K 
Period Boiling point 1564°C, 2847°F, 1837 K 
Block Density (g cm−3) 9.79 
Atomic number 83  Relative atomic mass 208.980  
State at 20°C Solid  Key isotopes 209Bi 
Electron configuration [Xe] 4f145d106s26p3  CAS number 7440-69-9 
ChemSpider ID 4514266 ChemSpider is a free chemical structure database


Image explanation

Murray Robertson is the artist behind the images which make up Visual Elements. This is where the artist explains his interpretation of the element and the science behind the picture.


The description of the element in its natural form.

Biological role

The role of the element in humans, animals and plants.

Natural abundance

Where the element is most commonly found in nature, and how it is sourced commercially.

Uses and properties

Image explanation
The image includes an alchemical symbol used to represent the element. In the background are drawings of ancient chemistry apparatus.
Bismuth is a high-density, silvery, pink-tinged metal.
Bismuth metal is brittle and so it is usually mixed with other metals to make it useful. Its alloys with tin or cadmium have low melting points and are used in fire detectors and extinguishers, electric fuses and solders.

Bismuth oxide is used as a yellow pigment for cosmetics and paints, while bismuth(III) chloride oxide (BiClO) gives a pearly effect to cosmetics. Basic bismuth carbonate is taken in tablet or liquid form for indigestion as ‘bismuth mixture’.
Biological role
Bismuth has no known biological role, and is non-toxic.
Natural abundance
Bismuth occurs as the native metal, and in ores such as bismuthinite and bismite. The major commercial source of bismuth is as a by-product of refining lead, copper, tin, silver and gold ores.
  Help text not available for this section currently


Bismuth was discovered by an unknown alchemist around 1400 AD. Later that century it was alloyed with lead to make cast type for printers and decorated caskets were being crafted in the metal. Bismuth was often confused with lead; it was likewise a heavy metal and melted at a relatively low temperature making it easy to work. Georgius Agricola in the early 1500s speculated that it was a distinctly different metal, as did Caspar Neuman in the early 1700s, but proof that it was so finally came in 1753 thanks to the work of Claude-François Geoffroy.

Bismuth was used as an alloying metal in the bronze of the Incas of South America around 1500 AD. Bismuth was not mined as ore but appears to have occurred as the native metal.

Atomic radius, non-bonded
Half of the distance between two unbonded atoms of the same element when the electrostatic forces are balanced. These values were determined using several different methods.

Covalent radius
Half of the distance between two atoms within a single covalent bond. Values are given for typical oxidation number and coordination.

Electron affinity
The energy released when an electron is added to the neutral atom and a negative ion is formed.

Electronegativity (Pauling scale)
The tendency of an atom to attract electrons towards itself, expressed on a relative scale.

First ionisation energy
The minimum energy required to remove an electron from a neutral atom in its ground state.

Atomic data

Atomic radius, non-bonded (Å) 2.07 Covalent radius (Å) 1.50
Electron affinity (kJ mol−1) 90.924 Electronegativity
(Pauling scale)
Ionisation energies
(kJ mol−1)


Common oxidation states

The oxidation state of an atom is a measure of the degree of oxidation of an atom. It is defined as being the charge that an atom would have if all bonds were ionic. Uncombined elements have an oxidation state of 0. The sum of the oxidation states within a compound or ion must equal the overall charge.


Atoms of the same element with different numbers of neutrons.

Key for isotopes

Half life
  y years
  d days
  h hours
  m minutes
  s seconds
Mode of decay
  α alpha particle emission
  β negative beta (electron) emission
  β+ positron emission
  EC orbital electron capture
  sf spontaneous fission
  ββ double beta emission
  ECEC double orbital electron capture

Oxidation states and isotopes

Common oxidation states 5, 3
Isotopes Isotope Atomic mass Natural abundance (%) Half life Mode of decay
  209Bi 208.980 100 1.9 x 1019 α 


Data for this section been provided by the British Geological Survey.

Relative supply risk

An integrated supply risk index from 1 (very low risk) to 10 (very high risk). This is calculated by combining the scores for crustal abundance, reserve distribution, production concentration, substitutability, recycling rate and political stability scores.

Crustal abundance (ppm)

The number of atoms of the element per 1 million atoms of the Earth’s crust.

Recycling rate

The percentage of a commodity which is recycled. A higher recycling rate may reduce risk to supply.


The availability of suitable substitutes for a given commodity.
High = substitution not possible or very difficult.
Medium = substitution is possible but there may be an economic and/or performance impact
Low = substitution is possible with little or no economic and/or performance impact

Production concentration

The percentage of an element produced in the top producing country. The higher the value, the larger risk there is to supply.

Reserve distribution

The percentage of the world reserves located in the country with the largest reserves. The higher the value, the larger risk there is to supply.

Political stability of top producer

A percentile rank for the political stability of the top producing country, derived from World Bank governance indicators.

Political stability of top reserve holder

A percentile rank for the political stability of the country with the largest reserves, derived from World Bank governance indicators.

Supply risk

Relative supply risk 9
Crustal abundance (ppm) 0.18
Recycling rate (%) <10
Substitutability Unknown
Production concentration (%) 42
Reserve distribution (%) 75
Top 3 producers
  • 1) China
  • 2) Mexico
  • 3) Japan
Top 3 reserve holders
  • 1) China
  • 2) Peru
  • 3) Mexico
Political stability of top producer 24.1
Political stability of top reserve holder 24.1


Specific heat capacity (J kg−1 K−1)

Specific heat capacity is the amount of energy needed to change the temperature of a kilogram of a substance by 1 K.

Young's modulus

A measure of the stiffness of a substance. It provides a measure of how difficult it is to extend a material, with a value given by the ratio of tensile strength to tensile strain.

Shear modulus

A measure of how difficult it is to deform a material. It is given by the ratio of the shear stress to the shear strain.

Bulk modulus

A measure of how difficult it is to compress a substance. It is given by the ratio of the pressure on a body to the fractional decrease in volume.

Vapour pressure

A measure of the propensity of a substance to evaporate. It is defined as the equilibrium pressure exerted by the gas produced above a substance in a closed system.

Pressure and temperature data – advanced

Specific heat capacity
(J kg−1 K−1)
122 Young's modulus (GPa) 31.9
Shear modulus (GPa) 12.0 Bulk modulus (GPa) 31.3
Vapour pressure  
Temperature (K)
400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
Pressure (Pa)
- - - - - - - - - - -
  Help text not available for this section currently


Listen to Bismuth Podcast
Transcript :

Chemistry in its element: bismuth


You're listening to Chemistry in its element brought to you by Chemistry World, the magazine of the Royal Society of Chemistry.

(End promo)

Chris Smith

Hello! This time we're turning to the tale of the element that held the key to masking a sun tan, provided engineers with safety valves for their boilers, could make spoons vanish in a hot cup of Victorian tea and continues to cure stomach upsets today. With the story of this remarkable metal, here is Andrea Sella.

Andrea Sella

Bismuth, A few months ago I was struck by a mad but irresistible impulse to cast a bell. A friend of mine lent me a template and I headed out to Tiranti, one of the best sculpting supply shops in London. With an inviting blue entrance, the shelves are cramped with bottles and tins of resins, polymers and initiators. There are tubs of clay anatomical models, trays of weird implements and books that explain how to make silicon moulds of your extremities. I explained to the young woman behind the counter what I wanted to do and she took me to the silicon resin section where she selected some bottles. I was about to pay for my goodies when my eye was drawn to the next shelf. Stacked in neat piles were clear plastic bags of shiny metal slabs. I picked up a pack and was immediately struck by the weight. Bismuth, the woman said, it casts really well and it's a lot less toxic than lead. I left the shop with a bag of that as well.

Bismuth is without doubt a heavy metal; It occurs so low in the periodic table many were puzzled by the fact that it didn't seem radioactive. In fact its major isotope bismuth-219 was predicted to be so back in 1949. But it wasn't until 55 years later, when the French physicists finally observed its decay. It has a half of life of 2x1019 years, I would round off as the same as eternity so. The density of the metal is 9.8, little less than lead but like water, the solid expands as it freezes and it floats on the liquid. It can melt quite easily and it can grow stunning little ziggurat like crystals by cooling it slowly from melt. It is easy. Heat some bismuth in an iron ladle or porcelain bowl using a sand bath and a Bunsen burner until it melts. This happens at just 271 degree Celsius. Then turn off the burner so that the metal cools very slowly and when the metal freezes over at the top poke two holes in the solid surface and then pour out the remaining liquid and then leave everything to cool at room temperature. If you now break open the metal mass you will find gorgeous stepped cubes of bismuth with a faintly pink iridescent sheen to them, a colour which arises from the thin layer of oxide that coats the metal. Just be careful, the metal is quite brittle and your precious cubes will shatter if dropped.

Bismuth itself is not very reactive; it is sometime found in ore deposits as the native metal. But surprisingly there is little evidence that it was known to the ancients. Aristotle doesn't list it among his seven metals and Pliny is silent on the matter. Only the Incas seem to be aware of it. The handle of a llama-headed knife found at Machu Picchu is fashioned from a bronze which is 18% bismuth, which sounds like rather more than an accident. Reliable description of bismuth only appeared in Europe in the 15th Century. It began to be mined in Schneeberg around 1460 and the metal soon started to be used as a kind of silvery ink or pigment which gave rise to a craze called Wismuth Malerei, bismuth painting. Painters in Italy including Raphael used both bismuth metal and bismuthinite, bismuth trisulphide in their work. But what was it the alchemist Basil Valentine rather confused things by calling it Wismut, White lead. Others thought it was a kind of tin, Stannum Glaciale or étain de glace, icy tin which the French chemist Nicolas Lemery said sniffily in 1697, was just a derivative of tin prepared by the English. Eventually however the mists cleared. And by early 19th century, John Dalton listed it amongst his atomic symbols as a circle around a capital letter B. Only then was its chemistry systematically explored particularly by the Swedish chemist Berzelius. For example if you dissolved bismuth in nitric acid and then poured the solution into water a brilliant white flaky material precipitates, Pearl white, the basic nitrate which from the 18th century was used in cosmetics to whiten the complexion, anything not to look like someone who worked in the sun. French druggist called it blanc de Perle. It had one disadvantage, however. In polluted cities, it had a tendency to pick up sulphur from the air turning the wear a rather bizarre browner shade. But because of its basic properties, the nitrate began to be given for upset stomachs often when mixed with milk of magnesia. Eventually this was superseded by its complex with salicylic acid, that pink sloth called pepto-bismol, a clever combination of a weak inorganic base and an organic anti inflammatory.

But bismuth's role in metallurgy has us always intrigued. It has been used extensively to make low melting alloys being added to pewter, the alloy of lead and tin to adjust its melting point or to antimony to make type metal, once used in printing presses. Alloys containing bismuth were used for safety valves and boilers, melting if the temperature rose too high and a classic prank invented in Victorian times was to cast spoons from an alloy containing 8 parts bismuth, 5 parts lead and 3 parts tin. Its melting point is low enough for the spoon to vanish into a cup of hot tea to the astonishment of the unsuspecting visitor. So what am I going to do with my bismuth ingots, perhaps I'll cast a few spoons before I have a go at the bell.

Chris Smith

Budding chemist and would be campanologist, Andrea Sella. Next time to the element that gives rise to a girl's best friend, but ladies just know where it really comes from first.

Katherine Holt

It is possible to make any carbon based material into a diamond including hair and even cremated remains. Yes you can turn your dearly departed pet into diamond if you want to. These artificial diamonds are chemically and physically identical to the natural stones and they come without the ethical baggage. However psychologically there remains a barrier, if he really loves you, wouldn't he buy you a real diamond.

Chris Smith

Indeed and Katherine Holt would be explaining why diamonds really are forever on next time's Chemistry in its element. I do hope you can join us. I'm Chris Smith thank you for listening and good bye.


Chemistry in its element is brought to you by the Royal Society of Chemistry and produced by There's more information and other episodes of Chemistry in its element on our website at

(End promo)
  Help text not available for this section currently
  Help Text


Learn Chemistry: Your single route to hundreds of free-to-access chemistry teaching resources.

Terms & Conditions

Images © Murray Robertson 1999-2011
Text © The Royal Society of Chemistry 1999-2011

Welcome to "A Visual Interpretation of The Table of Elements", the most striking version of the periodic table on the web. This Site has been carefully prepared for your visit, and we ask you to honour and agree to the following terms and conditions when using this Site.

Copyright of and ownership in the Images reside with Murray Robertson. The RSC has been granted the sole and exclusive right and licence to produce, publish and further license the Images.

The RSC maintains this Site for your information, education, communication, and personal entertainment. You may browse, download or print out one copy of the material displayed on the Site for your personal, non-commercial, non-public use, but you must retain all copyright and other proprietary notices contained on the materials. You may not further copy, alter, distribute or otherwise use any of the materials from this Site without the advance, written consent of the RSC. The images may not be posted on any website, shared in any disc library, image storage mechanism, network system or similar arrangement. Pornographic, defamatory, libellous, scandalous, fraudulent, immoral, infringing or otherwise unlawful use of the Images is, of course, prohibited.

If you wish to use the Images in a manner not permitted by these terms and conditions please contact the Publishing Services Department by email. If you are in any doubt, please ask.

Commercial use of the Images will be charged at a rate based on the particular use, prices on application. In such cases we would ask you to sign a Visual Elements licence agreement, tailored to the specific use you propose.

The RSC makes no representations whatsoever about the suitability of the information contained in the documents and related graphics published on this Site for any purpose. All such documents and related graphics are provided "as is" without any representation or endorsement made and warranty of any kind, whether expressed or implied, including but not limited to the implied warranties of fitness for a particular purpose, non-infringement, compatibility, security and accuracy.

In no event shall the RSC be liable for any damages including, without limitation, indirect or consequential damages, or any damages whatsoever arising from use or loss of use, data or profits, whether in action of contract, negligence or other tortious action, arising out of or in connection with the use of the material available from this Site. Nor shall the RSC be in any event liable for any damage to your computer equipment or software which may occur on account of your access to or use of the Site, or your downloading of materials, data, text, software, or images from the Site, whether caused by a virus, bug or otherwise.

We hope that you enjoy your visit to this Site. We welcome your feedback.


Visual Elements images and videos
© Murray Robertson 1998-2017.



W. M. Haynes, ed., CRC Handbook of Chemistry and Physics, CRC Press/Taylor and Francis, Boca Raton, FL, 95th Edition, Internet Version 2015, accessed December 2014.
Tables of Physical & Chemical Constants, Kaye & Laby Online, 16th edition, 1995. Version 1.0 (2005), accessed December 2014.
J. S. Coursey, D. J. Schwab, J. J. Tsai, and R. A. Dragoset, Atomic Weights and Isotopic Compositions (version 4.1), 2015, National Institute of Standards and Technology, Gaithersburg, MD, accessed November 2016.
T. L. Cottrell, The Strengths of Chemical Bonds, Butterworth, London, 1954.


Uses and properties

John Emsley, Nature’s Building Blocks: An A-Z Guide to the Elements, Oxford University Press, New York, 2nd Edition, 2011.
Thomas Jefferson National Accelerator Facility - Office of Science Education, It’s Elemental - The Periodic Table of Elements, accessed December 2014.
Periodic Table of Videos, accessed December 2014.


Supply risk data

Derived in part from material provided by the British Geological Survey © NERC.


History text

Elements 1-112, 114, 116 and 117 © John Emsley 2012. Elements 113, 115, 117 and 118 © Royal Society of Chemistry 2017.



Produced by The Naked Scientists.


Periodic Table of Videos

Created by video journalist Brady Haran working with chemists at The University of Nottingham.