Periodic Table > Meitnerium


Some elements exist in several different structural forms, these are called allotropes.

For more information on Murray Robertson’s image see Uses/Interesting Facts below.


Fact Box Terminology

Elements appear in columns or ‘groups’ in the periodic table. Members of a group typically have similar properties and electron configurations in their outer shell.

Elements are laid out into rows or ‘periods’ so that similar chemical behaviour is observed in columns.

Elements are organised into blocks by the orbital type in which the outer electrons are found. These blocks are named for the characteristic spectra they produce: sharp, principal, diffuse, and fundamental.

Atomic Number
The number of protons in the nucleus.

Atomic Radius/non -bonded (Å)
based on Van der Waals forces (where several isotopes exist, a value is presented for the most prevalent isotope). These values were calculated using a multitude of methods including crystallographic data, gas kinetic collision cross sections, critical densities, liquid state properties, for more details please refer to the CRC Handbook of Chemistry and Physics.

Electron Configuration
The arrangements of electrons above the last (closed shell) noble gas.

Elements are defined by the number of protons in its centre (nucleus), whilst the number of neutrons present can vary. The variations in the number of neutrons will create elements of different mass which are known as isotopes.

Melting Point (oC)
The temperature at which the solid-liquid phase change occurs.

Melting Point (K)
The temperature at which the solid-liquid phase change occurs.

Melting Point (oF)
The temperature at which the solid-liquid phase change occurs.

Boiling Point (oC)
The temperature at which the liquid-gas phase change occurs.

Boiling Point (K)
The temperature at which the liquid-gas phase change occurs.

Boiling Point (oF)
The temperature at which the liquid-gas phase change occurs.

Elements that do not possess a liquid phase at atmospheric pressure (1 atm) are described as going through a sublimation process.

Density (kgm-3)
Density is the weight of a substance that would fill 1 m3 (at 298 K unless otherwise stated).

Relative Atomic Mass
The mass of an atom relative to that of Carbon-12. This is approximately the sum of the number of protons and neutrons in the nucleus. Where more than one isotope exists the value given is the abundance weighted average.

Key Isotopes (% abundance)
An element must by definition have a fixed number of protons in its nucleus, and as such has a fixed atomic number, however variants of an element can exist with differing numbers of neutrons, and hence a different atomic masses (e.g. 12C has 6 protons and 6 neutrons and 13C has 6 protons and 7 neutrons).

CAS number
The Chemical Abstracts Service registry number is a unique identifier of a particular chemical, designed to prevent confusion arising from different languages and naming systems (where several isotopes exist, a value is presented for the most prevalent isotope).

Fact Box

Group Melting point Unknown 
Period Boiling point Unknown 
Block Density (kg m-3) Unknown 
Atomic number 109  Relative atomic mass 268.139  
State at room temperature Solid  Key isotopes 276Mt 
Electron configuration [Rn] 5f146d77s2  CAS number 54038-01-6 
ChemSpider ID - ChemSpider is a free chemical structure database

Interesting Facts terminology

Image Explanation

Murray Robertson is the artist behind the images which make up Visual Elements. This is where the artist explains his interpretation of the element and the science behind the picture.

Natural Abundance

Where this element is most commonly found in nature.

Biological Roles

The elements role within the body of humans, animals and plants. Also functionality in medical advancements both today and years ago.


The description of the element in its natural form.

Uses / Interesting Facts

Image explanation
An abstracted symbol and background developed from imagery of magnified atomic particles.
A highly radioactive metal, of which only a few atoms have ever been made.
At present, it is only used in research.
Biological role
Natural abundance
A transuranium element. Less than 10 atoms of meitnerium have ever been made, and it will probably never be isolated in observable quantities. Created by a so-called “cold fusion” method, in which a target of bismuth is bombarded with atoms of iron.
Atomic Data Terminology

Atomic radius/non -bonded (Å)
Based on Van der Waals forces (where several isotopes exist, a value is presented for the most prevalent isotope). These values were calculated using a multitude of methods including crystallographic data, gas kinetic collision cross sections, critical densities, liquid state properties,for more details please refer to the CRC Handbook of Chemistry and Physics.

Electron affinity (kJ mol-1)
The energy released when an additional electron is attached to the neutral atom and a negative ion is formed (where several isotopes exist, a value is presented for the most prevalent isotope). *

Electronegativity (Pauling scale)
The degree to which an atom attracts electrons towards itself, expressed on a relative scale as a function bond dissociation energies, Ed in eV. χA - χB =(eV)-1/2sqrt(Ed(AB)-[Ed(AA)+Ed(BB)]/2), with χH set as 2.2 (where several isotopes exist, a value is presented for the most prevalent isotope).

1st Ionisation energy (kJ mol-1)
The minimum energy required to remove an electron from a neutral atom in its ground state (where several isotopes exist, a value is presented for the most prevalent isotope).

Covalent radius (Å)
The size of the atom within a covalent bond, given for typical oxidation number and coordination (where several isotopes exist, a value is presented for the most prevalent isotope). ***

Atomic Data

Atomic radius, non-bonded (Å) Unknown Covalent radius (Å) 1.29
Electron affinity (kJ mol-1) Unknown Electronegativity
(Pauling scale)
Ionisation energies
(kJ mol-1)

Mining/Sourcing Information

Data for this section of the data page has been provided by the British Geological Survey. To review the full report please click here or please look at their website here.

Key for numbers generated

Governance indicators

1 (low) = 0 to 2

2 (medium-low) = 3 to 4

3 (medium) = 5 to 6

4 (medium-high) = 7 to 8

5 (high) = 9

Reserve base distribution

1 (low) = 0 to 30 %

2 (medium-low) = 30 to 45 %

3 (medium) = 45 to 60 %

4 (medium-high) = 60 to 75 %

5 (high) = 75 %

(Where data are unavailable an arbitrary score of 2 was allocated. For example, Be, As, Na, S, In, Cl, Ca and Ge are allocated a score of 2 since reserve base information is unavailable. Reserve base data are also unavailable for coal; however, reserve data for 2008 are available from the Energy Information Administration (EIA).)

Production Concentration

1 (low) = 0 to 30 %

2 (medium-low) = 30 to 45 %

3 (medium) = 45 to 60 %

4 (medium-high) = 60 to 75 %

5 (high) = 75 %

Crustal Abundance

1 (low) = 100 to 1000 ppm

2 (medium-low) =10 to 100 ppm

3 (medium) = 1 to 10 ppm

4 (medium-high) = 0.1 to 1 ppm

5 (high) = 0.1 ppm

(Where data are unavailable an arbitrary score of 2 was allocated. For example, He is allocated a score of 2 since crustal abundance data is unavailable.)

Explanations for terminology

Crustal Abundance (ppm)

The abundance of an element in the Earth's crust in parts-per-million (ppm) i.e. The number of atoms of this element per 1 million atoms of crust.


The country with the largest reserve base.

Reserve Base Distribution

This is a measure of the spread of future supplies, recording the percentage of a known resource likely to be available in the intermediate future (reserve base) located in the top three countries.

Production Concentrations

This reports the percentage of an element produced in the top three countries. The higher the value, the larger risk there is to supply.

Total Governance Factor

The World Bank produces a global percentile rank of political stability. The scoring system is given below, and the values for all three production countries were summed.

Relative Supply Risk Index

The Crustal Abundance, Reserve Base Distribution, Production Concentration and Governance Factor scores are summed and then divided by 2, to provide an overall Relative Supply Risk Index.

Supply Risk

Scarcity factor Unknown
Country with largest reserve base Unknown
Crustal abundance (ppm) Unknown
Leading producer Unknown
Reserve base distribution (%) Unknown
Production concentration (%) Unknown
Total governance factor(production) Unknown
Top 3 countries (mined)
  • Unknown
Top 3 countries (production)
  • Unknown

Oxidation states/ Isotopes

Key for Isotopes

Half Life
  y years
  d days
  h hours
  m minutes
  s seconds
Mode of decay
  α alpha particle emission
  β negative beta (electron) emission
  β+ positron emission
  EC orbital electron capture
  sf spontaneous fission
  ββ double beta emission
  ECEC double orbital electron capture


Common Oxidation states
The oxidation state of an atom is a measure of the degree of oxidation of an atom. It is defined as being the charge that an atom would have if all bonds were ionic. Free atoms have an oxidation state of 0, and the sum of oxidation numbers within a substance must equal the overall charge.

Important Oxidation states
The most common oxidation states of an element in its compounds.

Elements are defined by the number of protons in its centre (nucleus), whilst the number of neutrons present can vary. The variations in the number of neutrons will create elements of different mass which are known as isotopes.

Oxidation States / Isotopes

Common oxidation states Unknown
Isotopes Isotope Atomic mass Natural abundance (%) Half life Mode of decay
  276Mt 276.151 - ~ 0.7 s  α 

Pressure and Temperature - Advanced Terminology

Molar Heat Capacity (J mol-1 K-1)

Molar heat capacity is the energy required to heat a mole of a substance by 1 K.

Young's modulus (GPa)

Young's modulus is a measure of the stiffness of a substance, that is, it provides a measure of how difficult it is to extend a material, with a value given by the ratio of tensile strength to tensile strain.

Shear modulus (GPa)

The shear modulus of a material is a measure of how difficult it is to deform a material, and is given by the ratio of the shear stress to the shear strain.

Bulk modulus (GPa)

The bulk modulus is a measure of how difficult to compress a substance. Given by the ratio of the pressure on a body to the fractional decrease in volume.

Vapour Pressure (Pa)

Vapour pressure is the measure of the propensity of a substance to evaporate. It is defined as the equilibrium pressure exerted by the gas produced above a substance in a closed system.

Pressure / Temperature - Advanced

Molar heat capacity
(J mol-1 K-1)
Unknown Young's modulus (GPa) Unknown
Shear modulus (GPa) Unknown Bulk modulus (GPa) Unknown
Vapour pressure  
Temperature (K)
400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
Pressure (Pa)
- - - - - - - - - - -
  Help text not available for this section currently


There are 7 isotopes of meitnerium with mass numbers in the range 266 to 279. The longest lived is isotope 278 with a half-life of 8 seconds. Meitnerium was first made in 1982 at the German nuclear research facility, the Gesellschaft für Schwerionenforschung (GSI), by a group headed by Peter Armbruster and Gottfried Münzenberg. They bombarded a target of bismuth with accelerated iron ions. After a week, a single atom of element 109, isotope 266, was detected. This underwent radioactive decay after 5 milliseconds.

  Help text not available for this section currently


Listen to Meitnerium Podcast
Transcript :

Chemistry in its element - meitnerium


You're listening to Chemistry in its element brought to you by Chemistry World, the magazine of the Royal Society of Chemistry 

(End promo) 

Meera Senthilingam 

This week an element not found in nature, but that's created atom by atom. And named after a well respected scientist. Here's Nik Kaltsoyannis.   

Nik Kaltsoyannis

A flick through older chemistry textbooks, and even a quick look in some university chemistry lecture theatres, reveals a periodic table with only three rows of transition elements. These periodic tables typically stop at element 103 - lawrencium - which is the final element in the actinide, or 5f series. Toward the end of the 20th century, however, the extension of the periodic table beyond lawrencium, which had been well under way since the 1970s, was increasingly well recognised in the chemical community, and modern periodic tables feature a new row of elements situated in their rightful place at the foot of the transition metals. These transactinide, or 6d elements, begin with element 104, rutherfordium, which lives in group 4 under hafnium, and extend to element 112, very recently named copernicum, situated below mercury. Meitnerium, the topic of this podcast, with the symbol Mt and atomic number 109, sits in the middle of this band in group 9 underneath cobalt, rhodium and iridium. 

Meitnerium and the other transactinide elements do not exist in Nature. They are all man-made and have been synthesised in only fantastically small quantities, by combining the atoms of two lighter elements. They are all highly radioactive, with very short half-lives, severely limiting the practical chemistry that can be performed on them. Indeed, entirely new experimental techniques, collectively known as "atom-at-a-time" methods, have been developed to study these elements. In these experiments we are not working with moles of atoms, or even recognisable fractions of moles, but literally with single atoms. 

Meitnerium was named after the Austrian physicist Lise Meitner, born in Vienna in 1878. She managed, in very difficult circumstances, to graduate in physics with the equivalent of a PhD and in 1907 moved to the Kaiser Willhelm Institute in Berlin, to begin researching in the new field of radiochemistry. It was there that she met chemist Otto Hahn, with whom she had a long and productive scientific collaboration. In the 1930s, they worked together on irradiating uranium with neutrons, but before they were able to complete their studies the rise of Nazism forced Meitner, a Jew, to flee Germany in 1938. She moved to Stockholm and continued to communicate with Hahn frequently by letter. They were puzzled by the observation that barium was produced upon irradiation of uranium with neutrons, and it was not until Christmas of 1938 that Meitner, whilst walking with her nephew Otto Frisch, realised what was happening. The neutrons were causing the uranium nuclei to split, generating barium, an element with atoms a little over half the size of those of uranium. Meitner and Frisch predicted that krypton must be the other product of this fission reaction, and soon afterwards Frisch, upon returning to Copenhagen, verified this prediction. 

Meitner spent the second world war in Sweden. It was an unhappy time for her, as there was little local interest in nuclear physics, and she clashed with her host, the Nobel prize winner Manne Siegbahn. She was horrified to learn of the atomic bomb attacks on Hiroshima and Nagasaki, the terrifying culmination of her discovery of nuclear fission. Shortly afterwards she received a different type of shock, when she heard that the 1944 Nobel prize for chemistry had been awarded solely to her long term collaborator Hahn. There is little doubt that her disagreements with host Siegbahn, together with her sex and religion, counted against her in the eyes of the committee. Although Hahn privately acknowledged her contribution by giving her half of the Nobel prize money, he refused to do so publicly, a further source of pain to her. 

Recognition did eventually come to Meitner, including the 1946 US "Woman of the Year" award, and the prestigious Enrico Fermi award from the US atomic energy commission in 1966. She died in 1968, and is buried in Hampshire, for she spent her final years in England, to be near her nephew Frisch in Cambridge. In 1997 her scientific contributions were immortalised with the official adoption of the name meitnerium for element 109. 

Meitnerium was first discovered in 1982 in Darmstadt, in what was then West Germany. A single atom was made by bombarding a target of bismuth with accelerated nuclei of iron, to make the isotope meitnerium-266, which has 157 neutrons in its nucleus, together with the 109 protons which define the element. No chemical experiments have ever been performed on meitnerium, because a sufficiently stable isotope has yet to be made. Meitnerium-266 has a half-life of just 1.7 milliseconds, and even the most stable known isotope, meitnerium-276, has a half-life of less than 1 second. Theoretical predictions tell us that meitnerium-271, which could be produced by reaction of uranium with chlorine, or berkelium with magnesium, may well have a sufficiently long half-life so as to allow atom-at-a-time chemistry to be performed, but meitnerium-271 has yet to be made. There is little doubt, however, that given the skill and ingenuity of the atom-at-a-time scientists, meitnerium will gain a chemistry, and that these achievements will be a fitting tribute to the remarkable woman who's name the element bears. 

Meera Senthilingam

And a much deserved tribute indeed. That was University College London's Nik Kaltsoyannis with the unstable chemistry of meitnerium. Now in contrast, next week we have an element with some very long lived isotopes.

Samarium has several isotopes, four of which are stable and several of which are unstable. The half-lives of many of these are very short - on the order of a few seconds, but three - samarium-147, samarium-148 and samarium-149 have extremely long half-lives. Samarium-147 has a staggeringly long half-life - 1.76 x 1011  years, or in real money 106 billion years. Even by geological standards this gigantic figure is incomprehensible, especially if we remember that the earth itself is only a little under 14 billion years old.

Meera Senthilingam

And join science writer Richard Corfield to find out the uses of the long-lived isotopes of samarium as well as its shorter term ones in next week's Chemistry in its Element.   Until then I'm Meera Senthilingam from thenakedscientist dot com, thanks for listening and goodbye. 


Chemistry in its element is brought to you by the Royal Society of Chemistry and produced by thenakedscientists dot com. There's more information and other episodes of Chemistry in its element on our website at chemistryworld dot org forward slash elements. 

(End promo)


  Help text not available for this section currently
  Help Text


Description :
Assessment for Learning is an effective way of actively involving students in their learning. This is a series of plans based around chemistry topics.
Description :
When concentrated hydrochloric acid is added to a very dilute solution of copper sulfate, the pale blue solution slowly turns yellow-green on the formation of a copper chloride complex. When concentr...
Description :
The purpose of this experiment is to observe and interpret some of the chemistry of three first row transition elements and to compare them with a typical s-block element.
Description :
The Periodic Table allows chemists to see similarities and trends in the properties of chemical elements. This experiment illustrates some properties of the common transition elements and their compo...
Description :
In this experiment you will be looking at a group of transition elements chromium, molybdenum and tungsten.
Description :
The purpose of this experiment is to examine some of the solution chemistry of the transition elements.

Terms & Conditions

Images © Murray Robertson 1999-2011
Text © The Royal Society of Chemistry 1999-2011

Welcome to "A Visual Interpretation of The Table of Elements", the most striking version of the periodic table on the web. This Site has been carefully prepared for your visit, and we ask you to honour and agree to the following terms and conditions when using this Site.

Copyright of and ownership in the Images reside with Murray Robertson. The RSC has been granted the sole and exclusive right and licence to produce, publish and further license the Images.

The RSC maintains this Site for your information, education, communication, and personal entertainment. You may browse, download or print out one copy of the material displayed on the Site for your personal, non-commercial, non-public use, but you must retain all copyright and other proprietary notices contained on the materials. You may not further copy, alter, distribute or otherwise use any of the materials from this Site without the advance, written consent of the RSC. The images may not be posted on any website, shared in any disc library, image storage mechanism, network system or similar arrangement. Pornographic, defamatory, libellous, scandalous, fraudulent, immoral, infringing or otherwise unlawful use of the Images is, of course, prohibited.

If you wish to use the Images in a manner not permitted by these terms and conditions please contact the Publishing Services Department by email. If you are in any doubt, please ask.

Commercial use of the Images will be charged at a rate based on the particular use, prices on application. In such cases we would ask you to sign a Visual Elements licence agreement, tailored to the specific use you propose.

The RSC makes no representations whatsoever about the suitability of the information contained in the documents and related graphics published on this Site for any purpose. All such documents and related graphics are provided "as is" without any representation or endorsement made and warranty of any kind, whether expressed or implied, including but not limited to the implied warranties of fitness for a particular purpose, non-infringement, compatibility, security and accuracy.

In no event shall the RSC be liable for any damages including, without limitation, indirect or consequential damages, or any damages whatsoever arising from use or loss of use, data or profits, whether in action of contract, negligence or other tortious action, arising out of or in connection with the use of the material available from this Site. Nor shall the RSC be in any event liable for any damage to your computer equipment or software which may occur on account of your access to or use of the Site, or your downloading of materials, data, text, software, or images from the Site, whether caused by a virus, bug or otherwise.

We hope that you enjoy your visit to this Site. We welcome your feedback.


Images:  Visual Elements © Murray Robertson 2011
Mining and Sourcing data:  British Geological Survey – natural environment research council.
Text:  John Emsley Nature’s Building Blocks: An A-Z Guide to the Elements, Oxford University Press, 2nd Edition, 2011.
Additional information for platinum, gold, neodymium and dysprosium obtained from Material Value Consultancy Ltd
Data: CRC Handbook of Chemistry and Physics, CRC Press, 92nd Edition, 2011.
G. W. C. Kaye and T. H. Laby Tables of Physical and Chemical Constants, Longman, 16th Edition, 1995.
Members of the RSC can access these books through our library.