Periodic Table > Copernicium
 

Terminology


Allotropes
Some elements exist in several different structural forms, these are called allotropes.


For more information on Murray Robertson’s image see Uses/Interesting Facts below.

 

Fact Box Terminology


Group
Elements appear in columns or ‘groups’ in the periodic table. Members of a group typically have similar properties and electron configurations in their outer shell.


Period
Elements are laid out into rows or ‘periods’ so that similar chemical behaviour is observed in columns.


Block
Elements are organised into blocks by the orbital type in which the outer electrons are found. These blocks are named for the characteristic spectra they produce: sharp, principal, diffuse, and fundamental.


Atomic Number
The number of protons in the nucleus.


Atomic Radius/non -bonded (Å)
based on Van der Waals forces (where several isotopes exist, a value is presented for the most prevalent isotope). These values were calculated using a multitude of methods including crystallographic data, gas kinetic collision cross sections, critical densities, liquid state properties, for more details please refer to the CRC Handbook of Chemistry and Physics.


Electron Configuration
The arrangements of electrons above the last (closed shell) noble gas.


Isotopes
Elements are defined by the number of protons in its centre (nucleus), whilst the number of neutrons present can vary. The variations in the number of neutrons will create elements of different mass which are known as isotopes.


Melting Point (oC)
The temperature at which the solid-liquid phase change occurs.


Melting Point (K)
The temperature at which the solid-liquid phase change occurs.


Melting Point (oF)
The temperature at which the solid-liquid phase change occurs.


Boiling Point (oC)
The temperature at which the liquid-gas phase change occurs.


Boiling Point (K)
The temperature at which the liquid-gas phase change occurs.


Boiling Point (oF)
The temperature at which the liquid-gas phase change occurs.


Sublimation
Elements that do not possess a liquid phase at atmospheric pressure (1 atm) are described as going through a sublimation process.


Density (kgm-3)
Density is the weight of a substance that would fill 1 m3 (at 298 K unless otherwise stated).


Relative Atomic Mass
The mass of an atom relative to that of Carbon-12. This is approximately the sum of the number of protons and neutrons in the nucleus. Where more than one isotope exists the value given is the abundance weighted average.


Key Isotopes (% abundance)
An element must by definition have a fixed number of protons in its nucleus, and as such has a fixed atomic number, however variants of an element can exist with differing numbers of neutrons, and hence a different atomic masses (e.g. 12C has 6 protons and 6 neutrons and 13C has 6 protons and 7 neutrons).


CAS number
The Chemical Abstracts Service registry number is a unique identifier of a particular chemical, designed to prevent confusion arising from different languages and naming systems (where several isotopes exist, a value is presented for the most prevalent isotope).

Fact Box

 
Group 12  Melting point Unknown 
Period Boiling point Unknown 
Block Density (kg m-3) Unknown 
Atomic number 112  Relative atomic mass [285]  
State at room temperature Solid  Key isotopes 285Cn 
Electron configuration [Rn] 5f146d107s2  CAS number 54084-26-3 
ChemSpider ID - ChemSpider is a free chemical structure database
 

Interesting Facts terminology


Image Explanation

Murray Robertson is the artist behind the images which make up Visual Elements. This is where the artist explains his interpretation of the element and the science behind the picture.


Natural Abundance

Where this element is most commonly found in nature.


Biological Roles

The elements role within the body of humans, animals and plants. Also functionality in medical advancements both today and years ago.


Appearance

The description of the element in its natural form.

Uses / Interesting Facts

 
Image explanation
The challenge with this element was to combine a sense of Copernician theory from the 16th century with the 21st century ratification of a very recently "discovered" element. The 17th century star chart background and concentric rings around the silvery metallic element are encompassed by the ground plan of the heavy ion accelerator where the element was first created.
Appearance
A highly radioactive metal, of which only a few atoms have ever been made.
Uses
At present, it is only used in research.
Biological role
It has no known biological role.
 
Atomic Data Terminology

Atomic radius/non -bonded (Å)
Based on Van der Waals forces (where several isotopes exist, a value is presented for the most prevalent isotope). These values were calculated using a multitude of methods including crystallographic data, gas kinetic collision cross sections, critical densities, liquid state properties,for more details please refer to the CRC Handbook of Chemistry and Physics.


Electron affinity (kJ mol-1)
The energy released when an additional electron is attached to the neutral atom and a negative ion is formed (where several isotopes exist, a value is presented for the most prevalent isotope). *


Electronegativity (Pauling scale)
The degree to which an atom attracts electrons towards itself, expressed on a relative scale as a function bond dissociation energies, Ed in eV. χA - χB =(eV)-1/2sqrt(Ed(AB)-[Ed(AA)+Ed(BB)]/2), with χH set as 2.2 (where several isotopes exist, a value is presented for the most prevalent isotope).


1st Ionisation energy (kJ mol-1)
The minimum energy required to remove an electron from a neutral atom in its ground state (where several isotopes exist, a value is presented for the most prevalent isotope).


Covalent radius (Å)
The size of the atom within a covalent bond, given for typical oxidation number and coordination (where several isotopes exist, a value is presented for the most prevalent isotope). ***

Atomic Data

 
Atomic radius, non-bonded (Å) Unknown Covalent radius (Å) 1.22
Electron affinity (kJ mol-1) Unknown Electronegativity
(Pauling scale)
Unknown
Ionisation energies
(kJ mol-1)
 
1st
-
2nd
-
3rd
-
4th
-
5th
-
6th
-
7th
-
8th
-
 

Mining/Sourcing Information

Data for this section of the data page has been provided by the British Geological Survey. To review the full report please click here or please look at their website here.


Key for numbers generated


Governance indicators

1 (low) = 0 to 2

2 (medium-low) = 3 to 4

3 (medium) = 5 to 6

4 (medium-high) = 7 to 8

5 (high) = 9


Reserve base distribution

1 (low) = 0 to 30 %

2 (medium-low) = 30 to 45 %

3 (medium) = 45 to 60 %

4 (medium-high) = 60 to 75 %

5 (high) = 75 %

(Where data are unavailable an arbitrary score of 2 was allocated. For example, Be, As, Na, S, In, Cl, Ca and Ge are allocated a score of 2 since reserve base information is unavailable. Reserve base data are also unavailable for coal; however, reserve data for 2008 are available from the Energy Information Administration (EIA).)


Production Concentration

1 (low) = 0 to 30 %

2 (medium-low) = 30 to 45 %

3 (medium) = 45 to 60 %

4 (medium-high) = 60 to 75 %

5 (high) = 75 %


Crustal Abundance

1 (low) = 100 to 1000 ppm

2 (medium-low) =10 to 100 ppm

3 (medium) = 1 to 10 ppm

4 (medium-high) = 0.1 to 1 ppm

5 (high) = 0.1 ppm

(Where data are unavailable an arbitrary score of 2 was allocated. For example, He is allocated a score of 2 since crustal abundance data is unavailable.)


Explanations for terminology


Crustal Abundance (ppm)

The abundance of an element in the Earth's crust in parts-per-million (ppm) i.e. The number of atoms of this element per 1 million atoms of crust.


Sourced

The country with the largest reserve base.


Reserve Base Distribution

This is a measure of the spread of future supplies, recording the percentage of a known resource likely to be available in the intermediate future (reserve base) located in the top three countries.


Production Concentrations

This reports the percentage of an element produced in the top three countries. The higher the value, the larger risk there is to supply.


Total Governance Factor

The World Bank produces a global percentile rank of political stability. The scoring system is given below, and the values for all three production countries were summed.


Relative Supply Risk Index

The Crustal Abundance, Reserve Base Distribution, Production Concentration and Governance Factor scores are summed and then divided by 2, to provide an overall Relative Supply Risk Index.

Supply Risk

 
Scarcity factor Unknown
Country with largest reserve base Unknown
Crustal abundance (ppm) Unknown
Leading producer Unknown
Reserve base distribution (%) Unknown
Production concentration (%) Unknown
Total governance factor(production) Unknown
Top 3 countries (mined)
  • Unknown
Top 3 countries (production)
  • Unknown
 

Oxidation states/ Isotopes


Key for Isotopes


Half Life
  y years
  d days
  h hours
  m minutes
  s seconds
Mode of decay
  α alpha particle emission
  β negative beta (electron) emission
  β+ positron emission
  EC orbital electron capture
  sf spontaneous fission
  ββ double beta emission
  ECEC double orbital electron capture

Terminology


Common Oxidation states
The oxidation state of an atom is a measure of the degree of oxidation of an atom. It is defined as being the charge that an atom would have if all bonds were ionic. Free atoms have an oxidation state of 0, and the sum of oxidation numbers within a substance must equal the overall charge.


Important Oxidation states
The most common oxidation states of an element in its compounds.


Isotopes
Elements are defined by the number of protons in its centre (nucleus), whilst the number of neutrons present can vary. The variations in the number of neutrons will create elements of different mass which are known as isotopes.

Oxidation States / Isotopes

 
Common oxidation states Unknown
Isotopes Isotope Atomic mass Natural abundance (%) Half life Mode of decay
  285Cn 285.174 - ~ 29 s  α 
 

Pressure and Temperature - Advanced Terminology


Molar Heat Capacity (J mol-1 K-1)

Molar heat capacity is the energy required to heat a mole of a substance by 1 K.


Young's modulus (GPa)

Young's modulus is a measure of the stiffness of a substance, that is, it provides a measure of how difficult it is to extend a material, with a value given by the ratio of tensile strength to tensile strain.


Shear modulus (GPa)

The shear modulus of a material is a measure of how difficult it is to deform a material, and is given by the ratio of the shear stress to the shear strain.


Bulk modulus (GPa)

The bulk modulus is a measure of how difficult to compress a substance. Given by the ratio of the pressure on a body to the fractional decrease in volume.


Vapour Pressure (Pa)

Vapour pressure is the measure of the propensity of a substance to evaporate. It is defined as the equilibrium pressure exerted by the gas produced above a substance in a closed system.

Pressure / Temperature - Advanced

 
Molar heat capacity
(J mol-1 K-1)
Unknown Young's modulus (GPa) Unknown
Shear modulus (GPa) Unknown Bulk modulus (GPa) Unknown
Vapour pressure  
Temperature (K)
400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
Pressure (Pa)
- - - - - - - - - - -
  Help text not available for this section currently

History

The first atoms of element 112 were announced by Sigurd Hofmann and produced at the Gesellschaft fur Schwerionenforschung (GSI) at Darmstadt, Germany, in 1996. Isotope-277 had been produced by bombarding lead for two weeks with zinc travelling at 30,000 km per second. Isotope-277 had a half-life of 0.24 milliseconds.


Since then, other isotopes of copernicium have been made. Isotope-285 was observed as part of the decay sequence of flerovium (element 114) produced at the Joint Institute for Nuclear Research (JINR) at Dubna, Russia, as was isotope-284 which was observed as part of the decay sequence of livermorium (element 116).

  Help text not available for this section currently

Podcasts

Listen to Copernicium Podcast
Transcript :

Chemistry in its element - element 112


(Promo)

You're listening to Chemistry in its element brought to you by Chemistry World, the magazine of the Royal Society of Chemistry 

(End promo) 

Meera Senthilingam 

This week an element so new that it's yet to be given an official name and it's discovery all began with a question. Here's Sigurd Hofmann. 

Sigurd Hofmann 

Our question is simple, but difficult to answer. What we want to know is how many elements are there or where is the end of the periodic table? 

The elements beyond uranium (those with an atomic number greater than 92) are not found in nature because they have short half-lives, meaning they exist for only very short periods of time before they decay. So, if we want to know how many of these elements, called the transuranium elements exist we have to try and make them in the laboratory. 

My team at the Institute for Heavy Ion Research in Darmstadt, Germany are one of many groups worldwide involved in 'searching' for more man-made elements and in 1996 we set about producing element 112, inside a particle accelerator. We bombarded a lead target - that has 82 protons - with a zinc beam containing 30 protons for one week, and were able to detect a single atom of an element with 112 protons - element 112. 

As is standard for these types of experiments, we used isotopes of zinc and lead with high numbers of neutrons. Our zinc nuclei had 40 neutrons and our lead nuclei had 126 neutrons, so that the nucleus of our new element had 112 protons and 166 neutrons, meaning that it had 278 nucleons or, as it is more commonly described, an atomic mass of 278. 

But like many chemical reactions this nuclear fusion reaction is exothermic and the newly created nucleus is hot. So, it cools down by emission of one neutron and the nucleus which we were able to study had the atomic mass number 277. We were only able to make a single atom of this element at this time, because the immensely strong electric forces acting the zinc and lead mean they are much more likely to fly apart than fuse together. 

In a second experiment in 2000 we were able to measure a second atom of element 112, and then in 2004 scientists working at RIKEN in Japan produced another two atoms of this element. After confirmation by the Japanese group, IUPAC - the association who ratify newly found elements - officially recognised my team as the discoverers of this element and in April 2009 we were asked to suggest a name for it, as it currently goes by the IUPAC systematic name Ununbium. We selected a name through email correspondence between the 21 researchers from four nations involved in the experiments. Also seriously considered were suggestions from students and scientists, posted on the Chemistry World blog site, within four weeks, we selected the astronomer Nicolaus Copernicus to give his name to element 112. 

Nicolaus Copernicus lived in the period of the transition from the middle ages to modern times. His work had exceptional influence on the political and philosophical thinking of people and on the rise of modern science based on the results of experiments. Nicolaus Copernicus developed a conclusive model for the complex astronomical observations of the movements of Sun, Moon, planets and stars on Heaven's Sphere. The first two of the laboratory created transuranium elements, neptunium and plutonium, received their names like uranium from the planets. So, to honour the father of the planetary system we suggested that element 112 was named after Copernicus. The name we suggested to IUPAC in July this year is 'copernicium', with the abbreviation Cn. Apparently IUPAC are also currently discussing modifying the name to 'copernicum', as it is easier to say in many languages. 

Chemically copernicium is located in group 12 of the Periodic Table - below zinc, cadmium and mercury and the first experiments using the adsorption of a few atoms of the element on a cold gold surface showed that copernicium behaves chemically like mercury, although it is possibly a little bit more volatile. We also believe that it will be liquid at room temperature. So far element copernicium has not found any practical uses, because of the problems associated with making it and the fact it decays within milliseconds or seconds. However, its detection has paved the way to finding heavier elements still, the so called super heavy elements. For these elements theory predicts longer lifetimes and higher stability. 

Meera Senthilingam 

So watch this space to find out if element 112 is indeed named copernicium and if any more super heavy elements will be added to the Periodic Table. That was Sigurd Hofmann from the GSI Helmolt Centre for Heavy Ion Research in Germany. Now staying on the theme of elemental discoveries, next week we hear about Palladium whose discoverer William Hyde-Wollaston announced his finding in a very unusual manner. 

Simon Cotton 

When he isolated this metal in 1802, he did something quite unique. Instead of announcing it in a reputable scientific journal, he described its properties in an anonymous leaflet, displayed in the window of a shop in Gerrard Street, Soho in April 1803. Entitled Palladium; or New Silver, this handbill described properties of the new element. No one was able to refute Wollaston's claim for a new element, but it was not until 1805 that he published his discovery in a scientific journal. 

Meera Senthilingam 

Simon Cotton will be explaining more about the discovery, chemistry and properties of palladium in next week's Chemistry in its Element. Until then I'm Meera Senthilingam and thank you for listening. 

(Promo) 

Chemistry in its element is brought to you by the Royal Society of Chemistry and produced by thenakedscientists dot com. There's more information and other episodes of Chemistry in its element on our website at chemistryworld dot org forward slash elements. 

(End promo) 

  Help text not available for this section currently
  Help Text

Resources

Description :
Assessment for Learning is an effective way of actively involving students in their learning. This is a series of plans based around chemistry topics.
Description :
When concentrated hydrochloric acid is added to a very dilute solution of copper sulfate, the pale blue solution slowly turns yellow-green on the formation of a copper chloride complex. When concentr...
Description :
The purpose of this experiment is to examine some of the solution chemistry of the transition elements
Description :
The purpose of this experiment is to observe and interpret some of the chemistry of three first row transition elements and to compare them with a typical s-block element.
Description :
The Periodic Table allows chemists to see similarities and trends in the properties of chemical elements. This experiment illustrates some properties of the common transition elements and their compo...
Description :
In this experiment you will be looking at a group of transition elements chromium, molybdenum and tungsten.
 

Terms & Conditions


Images © Murray Robertson 1999-2011
Text © The Royal Society of Chemistry 1999-2011

Welcome to "A Visual Interpretation of The Table of Elements", the most striking version of the periodic table on the web. This Site has been carefully prepared for your visit, and we ask you to honour and agree to the following terms and conditions when using this Site.


Copyright of and ownership in the Images reside with Murray Robertson. The RSC has been granted the sole and exclusive right and licence to produce, publish and further license the Images.


The RSC maintains this Site for your information, education, communication, and personal entertainment. You may browse, download or print out one copy of the material displayed on the Site for your personal, non-commercial, non-public use, but you must retain all copyright and other proprietary notices contained on the materials. You may not further copy, alter, distribute or otherwise use any of the materials from this Site without the advance, written consent of the RSC. The images may not be posted on any website, shared in any disc library, image storage mechanism, network system or similar arrangement. Pornographic, defamatory, libellous, scandalous, fraudulent, immoral, infringing or otherwise unlawful use of the Images is, of course, prohibited.


If you wish to use the Images in a manner not permitted by these terms and conditions please contact the Publishing Services Department by email. If you are in any doubt, please ask.


Commercial use of the Images will be charged at a rate based on the particular use, prices on application. In such cases we would ask you to sign a Visual Elements licence agreement, tailored to the specific use you propose.


The RSC makes no representations whatsoever about the suitability of the information contained in the documents and related graphics published on this Site for any purpose. All such documents and related graphics are provided "as is" without any representation or endorsement made and warranty of any kind, whether expressed or implied, including but not limited to the implied warranties of fitness for a particular purpose, non-infringement, compatibility, security and accuracy.


In no event shall the RSC be liable for any damages including, without limitation, indirect or consequential damages, or any damages whatsoever arising from use or loss of use, data or profits, whether in action of contract, negligence or other tortious action, arising out of or in connection with the use of the material available from this Site. Nor shall the RSC be in any event liable for any damage to your computer equipment or software which may occur on account of your access to or use of the Site, or your downloading of materials, data, text, software, or images from the Site, whether caused by a virus, bug or otherwise.


We hope that you enjoy your visit to this Site. We welcome your feedback.

References

 
Images:  Visual Elements © Murray Robertson 2011
Mining and Sourcing data:  British Geological Survey – natural environment research council.
Text:  John Emsley Nature’s Building Blocks: An A-Z Guide to the Elements, Oxford University Press, 2nd Edition, 2011.
Additional information for platinum, gold, neodymium and dysprosium obtained from Material Value Consultancy Ltd www.matvalue.com
Data: CRC Handbook of Chemistry and Physics, CRC Press, 92nd Edition, 2011.
G. W. C. Kaye and T. H. Laby Tables of Physical and Chemical Constants, Longman, 16th Edition, 1995.
Members of the RSC can access these books through our library.