Periodic Table > Nickel


Some elements exist in several different structural forms, called allotropes. Each allotrope has different physical properties.

For more information on the Visual Elements image see the Uses and properties section below.



A vertical column in the periodic table. Members of a group typically have similar properties and electron configurations in their outer shell.

A horizontal row in the periodic table. The atomic number of each element increases by one, reading from left to right.

Elements are organised into blocks by the orbital type in which the outer electrons are found. These blocks are named for the characteristic spectra they produce: sharp (s), principal (p), diffuse (d), and fundamental (f).

Atomic number
The number of protons in an atom.

Electron configuration
The arrangements of electrons above the last (closed shell) noble gas.

Melting point
The temperature at which the solid–liquid phase change occurs.

Boiling point
The temperature at which the liquid–gas phase change occurs.

The transition of a substance directly from the solid to the gas phase without passing through a liquid phase.

Density (g cm−3)
Density is the mass of a substance that would fill 1 cm3 at room temperature.

Relative atomic mass
The mass of an atom relative to that of carbon-12. This is approximately the sum of the number of protons and neutrons in the nucleus. Where more than one isotope exists, the value given is the abundance weighted average.

Atoms of the same element with different numbers of neutrons.

CAS number
The Chemical Abstracts Service registry number is a unique identifier of a particular chemical, designed to prevent confusion arising from different languages and naming systems.

Fact box

Group 10  Melting point 1455°C, 2651°F, 1728 K 
Period Boiling point 2913°C, 5275°F, 3186 K 
Block Density (g cm−3) 8.90 
Atomic number 28  Relative atomic mass 58.693  
State at 20°C Solid  Key isotopes 58Ni 
Electron configuration [Ar] 3d84s2  CAS number 7440-02-0 
ChemSpider ID 910 ChemSpider is a free chemical structure database


Image explanation

Murray Robertson is the artist behind the images which make up Visual Elements. This is where the artist explains his interpretation of the element and the science behind the picture.


The description of the element in its natural form.

Biological role

The role of the element in humans, animals and plants.

Natural abundance

Where the element is most commonly found in nature, and how it is sourced commercially.

Uses and properties

Image explanation
The image is of baked beans, which contain a surprising amount of nickel.
A silvery metal that resists corrosion even at high temperatures.
Nickel resists corrosion and is used to plate other metals to protect them. It is, however, mainly used in making alloys such as stainless steel. Nichrome is an alloy of nickel and chromium with small amounts of silicon, manganese and iron. It resists corrosion, even when red hot, so is used in toasters and electric ovens. A copper-nickel alloy is commonly used in desalination plants, which convert seawater into fresh water. Nickel steel is used for armour plating. Other alloys of nickel are used in boat propeller shafts and turbine blades.

Nickel is used in batteries, including rechargeable nickel-cadmium batteries and nickel-metal hydride batteries used in hybrid vehicles.

Nickel has a long history of being used in coins. The US five-cent piece (known as a ‘nickel’) is 25% nickel and 75% copper.

Finely divided nickel is used as a catalyst for hydrogenating vegetable oils. Adding nickel to glass gives it a green colour.
Biological role
The biological role of nickel is uncertain. It can affect the growth of plants and has been shown to be essential to some species.

Some nickel compounds can cause cancer if the dust is inhaled, and some people are allergic to contact with the metal.

Nickel cannot be avoided completely. We take in nickel compounds with our diet. It is an essential element for some beans, such as the navy bean that is used for baked beans.
Natural abundance
The minerals from which most nickel is extracted are iron/nickel sulfides such as pentlandite. It is also found in other minerals, including garnierite.

A substantial amount of the nickel on Earth arrived with meteorites. One of these landed in the region near Ontario, Canada, hundreds of millions of years ago. This region is now responsible for about 15% of the world’s production.

Atomic radius, non-bonded
Half of the distance between two unbonded atoms of the same element when the electrostatic forces are balanced. These values were determined using several different methods.

Covalent radius
Half of the distance between two atoms within a single covalent bond. Values are given for typical oxidation number and coordination.

Electron affinity
The energy released when an electron is added to the neutral atom and a negative ion is formed.

Electronegativity (Pauling scale)
The tendency of an atom to attract electrons towards itself, expressed on a relative scale.

First ionisation energy
The minimum energy required to remove an electron from a neutral atom in its ground state.

Atomic data

Atomic radius, non-bonded (Å) 1.97 Covalent radius (Å) 1.17
Electron affinity (kJ mol−1) 111.537 Electronegativity
(Pauling scale)
Ionisation energies
(kJ mol−1)


Data for this section been provided by the British Geological Survey.

Relative supply risk

An integrated supply risk index from 1 (very low risk) to 10 (very high risk). This is calculated by combining the scores for crustal abundance, reserve distribution, production concentration, substitutability, recycling rate and political stability scores.

Crustal abundance (ppm)

The number of atoms of the element per 1 million atoms of the Earth’s crust.

Recycling rate

The percentage of a commodity which is recycled. A higher recycling rate may reduce risk to supply.


The availability of suitable substitutes for a given commodity.
High = substitution not possible or very difficult.
Medium = substitution is possible but there may be an economic and/or performance impact
Low = substitution is possible with little or no economic and/or performance impact

Production concentration

The percentage of an element produced in the top producing country. The higher the value, the larger risk there is to supply.

Reserve distribution

The percentage of the world reserves located in the country with the largest reserves. The higher the value, the larger risk there is to supply.

Political stability of top producer

A percentile rank for the political stability of the top producing country, derived from World Bank governance indicators.

Political stability of top reserve holder

A percentile rank for the political stability of the country with the largest reserves, derived from World Bank governance indicators.

Supply risk

Relative supply risk 6.2
Crustal abundance (ppm) 26.6
Recycling rate (%) >30
Substitutability High
Production concentration (%) 17
Reserve distribution (%) 36
Top 3 producers
  • 1) Russia
  • 2) Indonesia
  • 3) Philippines
Top 3 reserve holders
  • 1) Australia
  • 2) New Caledonia
  • 3) Brazil
Political stability of top producer 18.4
Political stability of top reserve holder 74.5


Common oxidation states

The oxidation state of an atom is a measure of the degree of oxidation of an atom. It is defined as being the charge that an atom would have if all bonds were ionic. Uncombined elements have an oxidation state of 0. The sum of the oxidation states within a compound or ion must equal the overall charge.


Atoms of the same element with different numbers of neutrons.

Key for isotopes

Half life
  y years
  d days
  h hours
  m minutes
  s seconds
Mode of decay
  α alpha particle emission
  β negative beta (electron) emission
  β+ positron emission
  EC orbital electron capture
  sf spontaneous fission
  ββ double beta emission
  ECEC double orbital electron capture

Oxidation states and isotopes

Common oxidation states 3, 2, 0
Isotopes Isotope Atomic mass Natural abundance (%) Half life Mode of decay
  58Ni 57.935 68.077 > 4 x 1019 EC-EC 
  60Ni 59.931 26.223
  61Ni 60.931 1.1399
  62Ni 61.928 3.6345
  64Ni 63.928 0.9255


Specific heat capacity (J kg−1 K−1)

Specific heat capacity is the amount of energy needed to change the temperature of a kilogram of a substance by 1 K.

Young's modulus

A measure of the stiffness of a substance. It provides a measure of how difficult it is to extend a material, with a value given by the ratio of tensile strength to tensile strain.

Shear modulus

A measure of how difficult it is to deform a material. It is given by the ratio of the shear stress to the shear strain.

Bulk modulus

A measure of how difficult it is to compress a substance. It is given by the ratio of the pressure on a body to the fractional decrease in volume.

Vapour pressure

A measure of the propensity of a substance to evaporate. It is defined as the equilibrium pressure exerted by the gas produced above a substance in a closed system.

Pressure and temperature data – advanced

Specific heat capacity
(J kg−1 K−1)
444 Young's modulus (GPa) 199.5 (soft): 219.2 (hard)
Shear modulus (GPa) 76.0 (soft): 83.9 (hard) Bulk modulus (GPa) 177.3 (soft); 187.6 (hard)
Vapour pressure  
Temperature (K)
400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
Pressure (Pa)
- - - 2.19
x 10-10
x 10-6
0.000471 0.0438 1.37 19.5 - -
  Help text not available for this section currently


Meteorites contain both iron and nickel, and earlier ages used them as a superior form of iron. Because the metal did not rust, it was regarded by the natives of Peru as a kind of silver. A zinc-nickel alloy called pai-t’ung (white copper) was in use in China as long ago as 200 BC. Some even reached Europe.

In 1751, Axel Fredrik Cronstedt, working at Stockholm, investigated a new mineral – now called nickeline (NiAs) – which came from a mine at Los, Hälsingland, Sweden. He thought it might contain copper but what he extracted was a new metal which he announced and named nickel in 1754. Many chemists thought it was an alloy of cobalt, arsenic, iron and copper – these elements were present as trace contaminants. It was not until 1775 that pure nickel was produced by Torbern Bergman and this confirmed its elemental nature.
  Help text not available for this section currently


Listen to Nickel Podcast
Transcript :

Chemistry in its element: nickel


You're listening to Chemistry in its element brought to you by Chemistry World, the magazine of the Royal Society of Chemistry.

(End promo)

Meera Senthilingam

This week even art galleries can spark chemical, or elemental, discussions. Andrea Sella.

Andrea Sella

Several years ago, I went with a friend to a small exhibition at London's National Gallery. It was a rare opportunity to see the masterpieces from the Doria Pamphilii gallery in Rome. The centrepiece was the famous portrait of Pope Innocent X by Velazquez, a spectacular snapshot of one of the most powerful men of his day, a tough-looking character in a gilded throne, sporting a neat goatee and a fierce and uncompromising glint in his eye.

Across from it were hung Francis Bacon's disturbing Three Screaming Popes, nightmarish variants on Velazquez' theme. The pictures were so ugly and brutal that I instinctively blinked and looked away, upwards. Unexpectedly, my eyes fell on a set of golden letters across the top of the doorway. I giggled and my friend said to me, 'what's so funny? These pictures are just awful.'

'Mond', I replied, 'fancy finding him here.'

'Who?' she asked, looking puzzled.

'Mond,' I replied. 'This gallery was endowed by Ludwig Mond, the chemist who made nickel available to the world.' I fully expected her to roll her eyes and give me that pitying look that women reserve for the moment when the real nerd in a man is finally revealed.

But there was none of that.

'I've never heard of him,' she said. 'Did he discover it?'

'No. He didn't. Nickel had been known for some time before that - it had been used in China and Peru to make a kind of steel. But it wasn't until the 19th century that two Swedish chemists, Cronstedt and Bergmann between them established that it was an element. It was named nickel after one of its ores, a reddish material that German miners called kupfernickel - St Nicholas's copper.'

'But isn't nickel rather nasty? Wasn't there some problem with nickel jewellery?' my friend asked.

'Yes. Nickel has long been used in alloys and to plate other metals - the nickel provides a tough resistant and shiny coating that protects the object from corrosion.'

'Oh, you mean a bit like chrome plating '.

'Yes, a bit like chrome, but less vulgar - chromium gives a brilliant shine. Nickel is a bit more subdued.'

'You mean classy.'

'I guess so. But the problem is that in contact with the skin, as in jewellery, the tiny amounts of nickel that dissolves in the sweat of the wearer was enough to cause skin reactions in some people and the using nickel turned out not to be a great idea.'

'But what about Mond?'

'Oh yeah. Right.' I replied. 'Mond was a German chemist who moved to the UK. And he had a problem - he was passing carbon monoxide gas through nickel valves and these kept failing and leaking. What Mond and his assistant Langer discovered was something remarkable - that his valves were corroding because the metal reacted with carbon monoxide, to make a compound called nickel carbonyl.'

'So what?'

'Well nickel carbonyl turned out to be a very volatile colourless liquid, one that boils just below room temperature.'

'Hmmm. Sounds a bit nasty,' she said doubtfully.

'Oh yes. Very. Because it's so volatile, you need to be really careful when you handle it since if you inhale it, it will decompose releasing poisonous carbon monoxide and dumping metallic nickel into your lungs. So it's very dangerous indeed. But in a way, that's the beauty of it: nickel carbonyl is incredibly fragile. If you heat it up it shakes itself to pieces, and you get both the nickel and the carbon monoxide back. So what Mond had was a deliciously simple way to separate and purify nickel from any other metal. And what is more, he could recycle the carbon monoxide.'


'Mond wasn't just an observant chemist. He was also a pretty savvy business man. He patented his process and set up in business to sell the purest nickel at prices far lower than anyone else. He made an absolute fortune, and then steadily expanded into other areas of chemistry. His firm would eventually form the core of Imperial Chemical Industries, ICI, the conglomerate set up to defend British interests against, ironically, the onslaught of the burgeoning German chemicals industry.'

'So what do people do with nickel today, if it's so nasty,' she asked.

'Well, it's not really that nasty, provided you're careful in what you use it for. In the 1960s another German chemist named Wilke developed nickel compounds as cheap and simple catalysts for the petrochemicals industry to clip together small carbon molecules. It's also used in all sorts of alloys. There's Invar which is a kind of metallic pyrex, that doesn't expand or contract when you change the temperature. There's Monel, a steel so corrosion resistant that it will withstand even fluorine, which eats its way through just about anything. And there's the really weird memory metal, an alloy that no matter how much you twist and bend it, remembers its original shape and returns to it. And then there's superalloys made of nickel and aluminium with a dab of boron that are extremely light and actually get tougher as you heat them - so they're used in aircraft and rocket turbines.'

I could see I was going a bit too far. We turned back to the Pope. 'He must have been a bruiser,' I said.

'You know what I like about you?' my friend asked giving my arm a squeeze. 'It's that we go to see paintings and I end up hearing about weird stuff.'

'And you know what I like about you,' I replied. 'It's that you humour me when I go off on one.'

No doubt you're expecting me to say that it all ended happily. It didn't, and I haven't seen her in years. But weirdly enough, every time I think of nickel, I think of her. And the filthy look the Pope gave me.

Meera Senthilingam

So superalloys, relationships and the pope, what diverse chemical thoughts and stories nickel provokes. That was UCL's Andrea Sella with a contemporary story to nickel. Now next week the discovery of xenon.

Peter Wothers

The story of xenon begins in 1894 when Lord Rayleigh and William Ramsay were investigating why nitrogen extracted from chemical compounds is about one-half per cent lighter than nitrogen extracted from the air - an observation first made by Henry Cavendish 100 years earlier. Ramsay found that after atmospheric nitrogen has reacted with hot magnesium metal, a tiny proportion of a heavier and even less reactive gas is left over. They named this gas argon from the Greek for lazy or inactive to reflect its extreme inertness. The problem was, where did this new element fit into Mendeleev's periodic table of the elements? There were no other known elements that it resembled which led them to suspect that there was a whole family of elements yet to be discovered. Remarkably, this turned out to be the case.

Meera Senthilingam

And to hear how this story paned out, leading to the discovery of a new family of elements as well as xenon that would go on to light our roads and propel spaceships join Cambridge University's Peter Wothers in next week's Chemistry in its element. Until then thank you for listening, I'm Meera Senthilingam


Chemistry in its element is brought to you by the Royal Society of Chemistry and produced by There's more information and other episodes of Chemistry in its element on our website at

(End promo)
  Help text not available for this section currently
  Help Text


Description :
The purpose of this experiment is to observe and interpret some of the chemistry of three first row transition elements and to compare them with a typical s-block element.
Description :
The periodic table allows chemists to see similarities and trends in the properties of chemical elements. This experiment illustrates some properties of the common transition elements and their compou...
Description :
Assessment for Learning is an effective way of actively involving students in their learning. This is a series of plans based around chemistry topics.
Description :
When concentrated hydrochloric acid is added to a very dilute solution of copper sulfate, the pale blue solution slowly turns yellow-green on the formation of a copper chloride complex. When concentr...
Description :
In this experiment you will be looking at a group of transition elements chromium, molybdenum and tungsten.
Description :
The purpose of this experiment is to examine some of the solution chemistry of the transition elements.

Terms & Conditions

Images © Murray Robertson 1999-2011
Text © The Royal Society of Chemistry 1999-2011

Welcome to "A Visual Interpretation of The Table of Elements", the most striking version of the periodic table on the web. This Site has been carefully prepared for your visit, and we ask you to honour and agree to the following terms and conditions when using this Site.

Copyright of and ownership in the Images reside with Murray Robertson. The RSC has been granted the sole and exclusive right and licence to produce, publish and further license the Images.

The RSC maintains this Site for your information, education, communication, and personal entertainment. You may browse, download or print out one copy of the material displayed on the Site for your personal, non-commercial, non-public use, but you must retain all copyright and other proprietary notices contained on the materials. You may not further copy, alter, distribute or otherwise use any of the materials from this Site without the advance, written consent of the RSC. The images may not be posted on any website, shared in any disc library, image storage mechanism, network system or similar arrangement. Pornographic, defamatory, libellous, scandalous, fraudulent, immoral, infringing or otherwise unlawful use of the Images is, of course, prohibited.

If you wish to use the Images in a manner not permitted by these terms and conditions please contact the Publishing Services Department by email. If you are in any doubt, please ask.

Commercial use of the Images will be charged at a rate based on the particular use, prices on application. In such cases we would ask you to sign a Visual Elements licence agreement, tailored to the specific use you propose.

The RSC makes no representations whatsoever about the suitability of the information contained in the documents and related graphics published on this Site for any purpose. All such documents and related graphics are provided "as is" without any representation or endorsement made and warranty of any kind, whether expressed or implied, including but not limited to the implied warranties of fitness for a particular purpose, non-infringement, compatibility, security and accuracy.

In no event shall the RSC be liable for any damages including, without limitation, indirect or consequential damages, or any damages whatsoever arising from use or loss of use, data or profits, whether in action of contract, negligence or other tortious action, arising out of or in connection with the use of the material available from this Site. Nor shall the RSC be in any event liable for any damage to your computer equipment or software which may occur on account of your access to or use of the Site, or your downloading of materials, data, text, software, or images from the Site, whether caused by a virus, bug or otherwise.

We hope that you enjoy your visit to this Site. We welcome your feedback.


Visual Elements images and videos
© Murray Robertson 2011.



W. M. Haynes, ed., CRC Handbook of Chemistry and Physics, CRC Press/Taylor and Francis, Boca Raton, FL, 95th Edition, Internet Version 2015, accessed December 2014.
Tables of Physical & Chemical Constants, Kaye & Laby Online, 16th edition, 1995. Version 1.0 (2005), accessed December 2014.
J. S. Coursey, D. J. Schwab, J.J. Tsai, and R. A. Dragoset, Atomic Weights and Isotopic Compositions(version 3.0), 2010, National Institute of Standards and Technology, Gaithersburg, MD, accessed December 2014.
T. L. Cottrell, The Strengths of Chemical Bonds, Butterworth, London, 1954.


Uses and properties

John Emsley, Nature’s Building Blocks: An A-Z Guide to the Elements, Oxford University Press, New York, 2nd Edition, 2011.
Thomas Jefferson National Accelerator Facility - Office of Science Education, It’s Elemental - The Periodic Table of Elements, accessed December 2014.
Periodic Table of Videos, accessed December 2014.


Supply risk data

Derived in part from material provided by the British Geological Survey © NERC.


History text

© John Emsley 2012.



Produced by The Naked Scientists.


Periodic Table of Videos

Created by video journalist Brady Haran working with chemists at The University of Nottingham.
  • LearnChemistry
  • Download our free Periodic Table app for mobile phones and tablets now.
  • Google play
  • App Store