Periodic Table > Copper
 

Terminology


Allotropes
Some elements exist in several different structural forms, these are called allotropes.


For more information on Murray Robertson’s image see Uses and properties facts below.

 

Fact box terminology


Group
Elements appear in columns or ‘groups’ in the periodic table. Members of a group typically have similar properties and electron configurations in their outer shell.


Period
Elements are laid out into rows or ‘periods’ so that similar chemical behaviour is observed in columns.


Block
Elements are organised into blocks by the orbital type in which the outer electrons are found. These blocks are named for the characteristic spectra they produce: sharp, principal, diffuse, and fundamental.


Atomic Number
The number of protons in the nucleus.


Atomic Radius/non -bonded (Å)
based on Van der Waals forces (where several isotopes exist, a value is presented for the most prevalent isotope). These values were calculated using a multitude of methods including crystallographic data, gas kinetic collision cross sections, critical densities, liquid state properties, for more details please refer to the CRC Handbook of Chemistry and Physics.


Electron Configuration
The arrangements of electrons above the last (closed shell) noble gas.


Isotopes
Elements are defined by the number of protons in its centre (nucleus), whilst the number of neutrons present can vary. The variations in the number of neutrons will create elements of different mass which are known as isotopes.


Melting Point (oC)
The temperature at which the solid-liquid phase change occurs.


Melting Point (K)
The temperature at which the solid-liquid phase change occurs.


Melting Point (oF)
The temperature at which the solid-liquid phase change occurs.


Boiling Point (oC)
The temperature at which the liquid-gas phase change occurs.


Boiling Point (K)
The temperature at which the liquid-gas phase change occurs.


Boiling Point (oF)
The temperature at which the liquid-gas phase change occurs.


Sublimation
Elements that do not possess a liquid phase at atmospheric pressure (1 atm) are described as going through a sublimation process.


Density (kgm-3)
Density is the weight of a substance that would fill 1 m3 (at 298 K unless otherwise stated).


Relative Atomic Mass
The mass of an atom relative to that of Carbon-12. This is approximately the sum of the number of protons and neutrons in the nucleus. Where more than one isotope exists the value given is the abundance weighted average.


Key Isotopes (% abundance)
An element must by definition have a fixed number of protons in its nucleus, and as such has a fixed atomic number, however variants of an element can exist with differing numbers of neutrons, and hence a different atomic masses (e.g. 12C has 6 protons and 6 neutrons and 13C has 6 protons and 7 neutrons).


CAS number
The Chemical Abstracts Service registry number is a unique identifier of a particular chemical, designed to prevent confusion arising from different languages and naming systems (where several isotopes exist, a value is presented for the most prevalent isotope).

Fact box

 
Group 11  Melting point 1084.62 oC, 1984.316 oF, 1357.77 K 
Period Boiling point 2562 oC, 4643.6 oF, 2835.15 K 
Block Density (kg m-3) 8933 
Atomic number 29  Relative atomic mass 63.546  
State at room temperature Solid  Key isotopes 63Cu 
Electron configuration [Ar] 3d104s1  CAS number 7440-50-8 
ChemSpider ID 22414 ChemSpider is a free chemical structure database
 

Uses and properties terminology


Image Explanation

Murray Robertson is the artist behind the images which make up Visual Elements. This is where the artist explains his interpretation of the element and the science behind the picture.


Natural Abundance

Where this element is most commonly found in nature.


Biological Roles

The elements role within the body of humans, animals and plants. Also functionality in medical advancements both today and years ago.


Appearance

The description of the element in its natural form.

Uses and properties

 
Image explanation

One of the many alchemical symbols once used to represent the element against an antique 17th century printed map of the island of Cyprus from where the element derives its name.

Appearance

A reddish-gold metal that is easily worked and drawn into wire.

Uses

Historically, copper was the first metal to be worked by people, and the discovery that it could be hardened with a little tin to form the alloy bronze gave its name to the Bronze Age. Traditionally it has been one of the coinage metals along with silver and gold, but it is the most common and therefore the least valued of this group. All American coins are now copper alloys, and gun metals also contain copper. The greatest percentage of copper used is in electrical equipment such as wiring and motors; this is due to its great ability to conduct both heat and electricity. Copper sulfate is used widely as an agricultural poison and as an algicide in water purification. Copper compounds such as Fehling’s solution are used in chemical tests for sugar detection.

Biological role

Copper is an essential element, an adult human need to ingest around 1.2 milligrams of copper a day to help enzymes transfer energy in cells. Excess copper is toxic and genetic diseases such as Wilson’s disease and Menke’s disease are caused by the body’s inability to utilise copper properly.

Natural abundance

Copper metal does occur naturally, but by far the greatest source is in minerals such as chalcopyrite and bornite. Copper ores (copper sulfides, oxides and carbonates) are found in the USA and Canada, as well as several other places. From these ores and minerals copper is obtained by smelting, leaching and electrolysis.

 
Atomic data terminology

Atomic radius/non -bonded (Å)
Based on Van der Waals forces (where several isotopes exist, a value is presented for the most prevalent isotope). These values were calculated using a multitude of methods including crystallographic data, gas kinetic collision cross sections, critical densities, liquid state properties,for more details please refer to the CRC Handbook of Chemistry and Physics.


Electron affinity (kJ mol-1)
The energy released when an additional electron is attached to the neutral atom and a negative ion is formed (where several isotopes exist, a value is presented for the most prevalent isotope). *


Electronegativity (Pauling scale)
The degree to which an atom attracts electrons towards itself, expressed on a relative scale as a function bond dissociation energies, Ed in eV. χA - χB =(eV)-1/2sqrt(Ed(AB)-[Ed(AA)+Ed(BB)]/2), with χH set as 2.2 (where several isotopes exist, a value is presented for the most prevalent isotope).


1st Ionisation energy (kJ mol-1)
The minimum energy required to remove an electron from a neutral atom in its ground state (where several isotopes exist, a value is presented for the most prevalent isotope).


Covalent radius (Å)
The size of the atom within a covalent bond, given for typical oxidation number and coordination (where several isotopes exist, a value is presented for the most prevalent isotope). ***

Atomic data

 
Atomic radius, non-bonded (Å) 1.960 Covalent radius (Å) 1.22
Electron affinity (kJ mol-1) 119.117 Electronegativity
(Pauling scale)
1.900
Ionisation energies
(kJ mol-1)
 
1st
745.482
2nd
1957.917
3rd
3554.613
4th
5536.324
5th
7699.524
6th
9937.981
7th
13411.451
8th
16016.553
 

Mining/Sourcing Information

Data for this section of the data page has been provided by the British Geological Survey. To review the full report please click here or please look at their website here.


Key for numbers generated


Governance indicators

1 (low) = 0 to 2

2 (medium-low) = 3 to 4

3 (medium) = 5 to 6

4 (medium-high) = 7 to 8

5 (high) = 9


Reserve base distribution

1 (low) = 0 to 30 %

2 (medium-low) = 30 to 45 %

3 (medium) = 45 to 60 %

4 (medium-high) = 60 to 75 %

5 (high) = 75 %

(Where data are unavailable an arbitrary score of 2 was allocated. For example, Be, As, Na, S, In, Cl, Ca and Ge are allocated a score of 2 since reserve base information is unavailable. Reserve base data are also unavailable for coal; however, reserve data for 2008 are available from the Energy Information Administration (EIA).)


Production Concentration

1 (low) = 0 to 30 %

2 (medium-low) = 30 to 45 %

3 (medium) = 45 to 60 %

4 (medium-high) = 60 to 75 %

5 (high) = 75 %


Crustal Abundance

1 (low) = 100 to 1000 ppm

2 (medium-low) =10 to 100 ppm

3 (medium) = 1 to 10 ppm

4 (medium-high) = 0.1 to 1 ppm

5 (high) = 0.1 ppm

(Where data are unavailable an arbitrary score of 2 was allocated. For example, He is allocated a score of 2 since crustal abundance data is unavailable.)


Explanations for terminology


Crustal Abundance (ppm)

The abundance of an element in the Earth's crust in parts-per-million (ppm) i.e. The number of atoms of this element per 1 million atoms of crust.


Sourced

The country with the largest reserve base.


Reserve Base Distribution

This is a measure of the spread of future supplies, recording the percentage of a known resource likely to be available in the intermediate future (reserve base) located in the top three countries.


Production Concentrations

This reports the percentage of an element produced in the top three countries. The higher the value, the larger risk there is to supply.


Total Governance Factor

The World Bank produces a global percentile rank of political stability. The scoring system is given below, and the values for all three production countries were summed.


Relative Supply Risk Index

The Crustal Abundance, Reserve Base Distribution, Production Concentration and Governance Factor scores are summed and then divided by 2, to provide an overall Relative Supply Risk Index.

Supply risk

 
Scarcity factor 4.5
Country with largest reserve base Chile
Crustal abundance (ppm) 27
Leading producer Chile
Reserve base distribution (%) 36.00
Production concentration (%) 34.10
Total governance factor(production) 6
Top 3 countries (mined)
  • 1) Chile
  • 2) Peru
  • 3) USA
Top 3 countries (production)
  • 1) Chile
  • 2) Peru
  • 3) USA
 

Oxidation states and isotopes


Key for Isotopes


Half Life
  y years
  d days
  h hours
  m minutes
  s seconds
Mode of decay
  α alpha particle emission
  β negative beta (electron) emission
  β+ positron emission
  EC orbital electron capture
  sf spontaneous fission
  ββ double beta emission
  ECEC double orbital electron capture

Terminology


Common Oxidation states
The oxidation state of an atom is a measure of the degree of oxidation of an atom. It is defined as being the charge that an atom would have if all bonds were ionic. Free atoms have an oxidation state of 0, and the sum of oxidation numbers within a substance must equal the overall charge.


Important Oxidation states
The most common oxidation states of an element in its compounds.


Isotopes
Elements are defined by the number of protons in its centre (nucleus), whilst the number of neutrons present can vary. The variations in the number of neutrons will create elements of different mass which are known as isotopes.

Oxidation states and isotopes

 
Common oxidation states 2, 1
Isotopes Isotope Atomic mass Natural abundance (%) Half life Mode of decay
  63Cu 62.93 69.15
  65Cu 64.928 30.85
 

Pressure and temperature - advanced terminology


Molar Heat Capacity (J mol-1 K-1)

Molar heat capacity is the energy required to heat a mole of a substance by 1 K.


Young's modulus (GPa)

Young's modulus is a measure of the stiffness of a substance, that is, it provides a measure of how difficult it is to extend a material, with a value given by the ratio of tensile strength to tensile strain.


Shear modulus (GPa)

The shear modulus of a material is a measure of how difficult it is to deform a material, and is given by the ratio of the shear stress to the shear strain.


Bulk modulus (GPa)

The bulk modulus is a measure of how difficult to compress a substance. Given by the ratio of the pressure on a body to the fractional decrease in volume.


Vapour Pressure (Pa)

Vapour pressure is the measure of the propensity of a substance to evaporate. It is defined as the equilibrium pressure exerted by the gas produced above a substance in a closed system.

Pressure and temperature data – advanced

 
Molar heat capacity
(J mol-1 K-1)
24.44 Young's modulus (GPa) 129.8
Shear modulus (GPa) 48.3 Bulk modulus (GPa) 137.8
Vapour pressure  
Temperature (K)
400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
Pressure (Pa)
- - 6.60
x 10-11
1.53
x 10-6
1.22
x 10-3
0.135 3.94 54.4 - - -
  Help text not available for this section currently

History

Copper beads have been excavated in northern Iraq and which are more than ten thousand years old and presumably made from native copper, nuggets of which can sometimes be found. Copper was widely used in the ancient world as bronze, its alloy with tin, which was used to make cutlery, coins, and tools. In China it was used for bells.


Copper is not difficult to extract from it ores, but mineable deposits were relatively rare. Some, such as the copper mine at Falun, Sweden, date from the 1200s, were the source of great wealth. One way to extract the metal was to roast the sulfide ore then leach out the copper sulfate that was formed, with water. This was then trickled over scrap iron on the surface of which the copper deposited, forming a flaky layer that was easily removed.

  Help text not available for this section currently

Podcasts

Listen to Copper Podcast
Transcript :

Chemistry in Its Element - Copper


(Promo)

 

You're listening to Chemistry in its element brought to you by Chemistry World, the magazine of the Royal Society of Chemistry.

 

(End promo)

 

Chris Smith

Hello, this week coins, conductivity and copper. To tell the tale of the element that has carried us from the Stone Age to the Information Age, here is Steve Mylon.

 

Steve Mylon

Poor copper, until only recently it seems to have been out shone literally and figuratively by its transition metal cousins, Silver and Gold. I guess this is a combined result that history have in abundance. It's almost never the case where the popular elements are that way because of their utility and interesting chemistry.   But for Gold and Silver it's all so superficial. They are more popular because they're prettier. My wife for example, a non chemist, wouldn't dream of wearing a copper wedding ring. That might have something to do with the fact that copper oxide has an annoying habit of dyeing your skin green. But if she only took the time to learn about copper, to get to know it some; may be then she would be likely to turn her back on the others and wear it with pride. 

 

Some report that copper is the first metal to be mined and crafted by humans. Whether this is or is not the case, there is evidence of civilizations using copper as far back as 10,000 years. For cultures to advance from the Stone Age to the Bronze Age it was copper that they needed. Bronze has 2 parts copper and one part tin, not silver or gold. Copper's importance to civilization has never let out and even now due to its excellent conductivity, copper is in great demand world wide, as rapidly developing nations such as China and India establish the infrastructure required to bring electricity to the homes of their citizens.   In the past five years for example the price of copper has increased by more than four fold. Perhaps the greatest slap in the face to this important metal is its use in coins throughout many countries of the world. The orange brown coins are generally of low denomination while the shiny more silver like coins occupies the place at the top. Even in the United States' 5 cent piece, the nickel looks shiny and silvery, but actually contains 75% copper and only 25% nickel. Yet we don't even call it the copper. 

 

Of course I could go on and on spotting out many interesting facts and factoids about copper and why others should warm up to it. They easily could because it's an excellent heat conductor as well, but I find this metal so interesting for many other reasons as well. Copper is one of the few tracer metals that is essential for all species. For the most part the biological requirement of copper is quite low as only a few enzymes such as cytochrome oxidase and superoxide dismutase require copper at their active sites. These generally rely on the oxidation-reduction cycling and play an important role in respiration. For humans, the requirement is quite low as well, merely 2mg of copper a day for adults. Yet too little copper in your diet can lead to high blood pressure and higher levels of cholesterol. Interestingly for copper the gap separating the required amount and the toxic amount is quite small. It may be the smallest for all the required trace metals. This is probably why it is commonly used as a pesticide, fungicide and algaecide, because such small amounts can get the jobs done. 

 

In my opinion you're unlikely to find a metal on the periodic table that has the versatility of copper and still has not been given the respect amongst its peers that it deserves. While substantially more abundant than gold and silver it importance in history is unmatched and its utility at the macro scale is only matched by its utility at the micro scale. No other metal can compete. 

 

So I'll try to explain this to my wife, when I present her with a pair of copper earrings or a nice copper necklace this holiday season. My guess is she'll turn up her nose because she'll think that this is the stuff that pennies are made of, even though these days they really aren't. 

 

Chris Smith

A man married to copper, that's Steve Mylon. Next time we will be delving into the discovery of an element with a very firey temperament. 

 

Peter Wothers 

His younger cousin Edmund Davy was assisting Humphry at that time and he relates how when Humphry first saw the minute globules of Potassium burst through the crust of Potash and take fire, he could not contain his joy. Davy had every right to be delighted with this amazing new metal. It looks just like other bright shiny metals but its density was less than that of water. This meant that the metal would float on water. At least it would do if it didn't explode as soon as it came into contact with water.   Potassium is so reactive; it will even react and burn a hole through ice.

 

Chris Smith

Peter Wothers with the story of element number 19, Potassium. That's in next week's Chemistry in its element. I hope you can join us. I'm Chris Smith, thank you for listening and good bye!

 

(Promo)

 

Chemistry in its element is brought to you by the Royal Society of Chemistry and produced by thenakedscientists.com. There's more information and other episodes of Chemistry in its element on our website at chemistryworld.org/elements

 

(End promo)

  Help text not available for this section currently
  Help Text

Resources

Description :
The purpose of this experiment is to observe and interpret some of the chemistry of three first row transition elements and to compare them with a typical s-block element.
Description :
Copper(II) oxide can be reduced by hydrogen and its formula determined. Natural gas (mainly methane) can also be used as a reducing agent, but the reaction is much slower.
Description :
An introduction to the common elements found in the Earth's crust. This can be used to underpin topics on useful materials from the Earth and on the extraction of metals.
Description :
Gives information about the most common elements in the Earth’s crust and the other the chemical composition of some minerals.
Description :
Transition metals are situated between Groups 2 and 3 of the Periodic Table. They have important uses. One well-known transition metal is copper. Transition metals have similar reactions and properti...
Description :
The dramatic reaction between copper and nitric acid ought to be seen by all post-16 students. It provides an excellent opportunity to explain observations using the electrochemical series and makes ...
 

Terms & Conditions


Images © Murray Robertson 1999-2011
Text © The Royal Society of Chemistry 1999-2011

Welcome to "A Visual Interpretation of The Table of Elements", the most striking version of the periodic table on the web. This Site has been carefully prepared for your visit, and we ask you to honour and agree to the following terms and conditions when using this Site.


Copyright of and ownership in the Images reside with Murray Robertson. The RSC has been granted the sole and exclusive right and licence to produce, publish and further license the Images.


The RSC maintains this Site for your information, education, communication, and personal entertainment. You may browse, download or print out one copy of the material displayed on the Site for your personal, non-commercial, non-public use, but you must retain all copyright and other proprietary notices contained on the materials. You may not further copy, alter, distribute or otherwise use any of the materials from this Site without the advance, written consent of the RSC. The images may not be posted on any website, shared in any disc library, image storage mechanism, network system or similar arrangement. Pornographic, defamatory, libellous, scandalous, fraudulent, immoral, infringing or otherwise unlawful use of the Images is, of course, prohibited.


If you wish to use the Images in a manner not permitted by these terms and conditions please contact the Publishing Services Department by email. If you are in any doubt, please ask.


Commercial use of the Images will be charged at a rate based on the particular use, prices on application. In such cases we would ask you to sign a Visual Elements licence agreement, tailored to the specific use you propose.


The RSC makes no representations whatsoever about the suitability of the information contained in the documents and related graphics published on this Site for any purpose. All such documents and related graphics are provided "as is" without any representation or endorsement made and warranty of any kind, whether expressed or implied, including but not limited to the implied warranties of fitness for a particular purpose, non-infringement, compatibility, security and accuracy.


In no event shall the RSC be liable for any damages including, without limitation, indirect or consequential damages, or any damages whatsoever arising from use or loss of use, data or profits, whether in action of contract, negligence or other tortious action, arising out of or in connection with the use of the material available from this Site. Nor shall the RSC be in any event liable for any damage to your computer equipment or software which may occur on account of your access to or use of the Site, or your downloading of materials, data, text, software, or images from the Site, whether caused by a virus, bug or otherwise.


We hope that you enjoy your visit to this Site. We welcome your feedback.

References

 
Images:  Visual Elements © Murray Robertson 2011
Mining and Sourcing data:  British Geological Survey – natural environment research council.
Text:  John Emsley Nature’s Building Blocks: An A-Z Guide to the Elements, Oxford University Press, 2nd Edition, 2011.
Additional information for platinum, gold, neodymium and dysprosium obtained from Material Value Consultancy Ltd www.matvalue.com
Data: CRC Handbook of Chemistry and Physics, CRC Press, 92nd Edition, 2011.
G. W. C. Kaye and T. H. Laby Tables of Physical and Chemical Constants, Longman, 16th Edition, 1995.
Members of the RSC can access these books through our library.