Issue 22, 1999

The structure of N-aminopyrazole in the solid state and in solution: an experimental and computational study

Abstract

The title compound N-aminopyrazole (AMPZ) has been studied both theoretically and experimentally using abinitio methods, low-temperature X-ray crystallography, differential scanning calorimetry, IR spectroscopy, liquid state 1H NMR, broadband solid state 2H NMR and high resolution solid state 15N NMR spectroscopy, focussing on the structure and dynamics of the amino group and the characteristics of hydrogen bond (HB) association. The complete amino group rotation–inversion surface of AMPZ and, for comparison, also of the aniline monomer were calculated at the B3LYP/6-31G* level. The results indicate that monomeric AMPZ exhibits an s hybridized pyramidal amino group where the HH-distance vector is located perpendicular to the pyrazole ring and the hydrogen atoms bent towards the pyrazole ring nitrogen atom, i.e. with the lone electron pair anti to the latter. Both inversion at the nitrogen atom and the 180° rotation of the amino group lead to a metastable structure, where the inversion barrier is much larger than the rotational barrier. These results contrast with those obtained for aniline where the amino group is almost planar and subject to a degenerate 180° rotation. Further calculations of the hydrogen bonded cyclic AMPZ dimer indicate that hydrogen bond association does not substantially perturb the geometry of the amino group, where one of the amino group protons and the ring nitrogen atoms are involved in hydrogen bonding. The X-ray structure was determined at -173°C (100 K) on a monocrystal obtained by zone crystallization. DSC shows that on cooling, neat liquid AMPZ exhibits a solid–solid phase transition around -45°C to a low-temperature phase. In this phase AMPZ forms a weakly hydrogen bonded chain where the structure is similar to the one calculated for the monomer. Only one of the amino protons is involved in hydrogen bonding, where the NH stretch of the hydrogen bonded proton appears at 3197 cm-1 and of the non-hydrogen bonded proton at 3314 cm-1. Solid state 2H NMR spectroscopy of [ND2]AMPZ shows low-temperature structures with rigid ND vectors below and isotropically rotating vectors above the solid–solid phase transition. Hydrogen bond association was further studied by solid state 15N CPMAS (cross polarization magic angle spinning) NMR and by low-temperature liquid state 1H NMR of AMPZ specifically 15N labelled in the amino group. In contrast to the solid state, hydrogen bond exchange rendering the two amino group protons equivalent was found to be fast in the NMR timescale even at 100 K.

Supplementary files

Article information

Article type
Paper

Phys. Chem. Chem. Phys., 1999,1, 5113-5120

The structure of N-aminopyrazole in the solid state and in solution: an experimental and computational study

J. Antonio Jime′nez, R. María Claramunt, O. Mó, M. Yáñez, F. Wehrmann, G. Buntkowsky, H. Limbach, R. Goddard and J. Elguero, Phys. Chem. Chem. Phys., 1999, 1, 5113 DOI: 10.1039/A906187H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements