Issue 28, 2008

Bi-analyte SERS with isotopically edited dyes

Abstract

Isotopically substituted rhodamine dyes provide ideal probes for the study of single-molecule surface enhanced Raman scattering (SM-SERS) events through multiple-analyte techniques. Isotopic editing should, in principle, provide probes that have identical chemical properties (and surface chemistries); while exhibiting at the same time distinct Raman features which enable us to identify single-molecule SERS events. We present here a specific example of two-analyte SM-SERS based on the isotopic substitution of a methyl ester rhodamine dye. The dyes are carefully characterized (in both standard and SERS conditions) to confirm experimentally their similar chemical properties. We then demonstrate their utility for bi-analyte SERS (BiASERS) experiments and, as an example, highlight the transition from a single, to a few, to many molecules in the statistics of SM-SERS signals.

Graphical abstract: Bi-analyte SERS with isotopically edited dyes

Article information

Article type
Paper
Submitted
04 Mar 2008
Accepted
21 Apr 2008
First published
03 Jun 2008

Phys. Chem. Chem. Phys., 2008,10, 4147-4153

Bi-analyte SERS with isotopically edited dyes

E. Blackie, E. C. Le Ru, M. Meyer, M. Timmer, B. Burkett, P. Northcote and P. G. Etchegoin, Phys. Chem. Chem. Phys., 2008, 10, 4147 DOI: 10.1039/B803738H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements