Volume 140, 2009

Surface dynamics at well-defined single crystal microfacetted Pt(111) electrodes: in situ optical studies

Abstract

The assembly and electrochemical oxidation of well-defined CO adlayers on Pt(111) microfacets in aqueous CO-saturated 0.1 M H2SO4 were examined by a combination of in situ, simultaneous, time-resolved, reflectance spectroscopy (RS) and second harmonic generation (SHG), and potential step and linear scan techniques. Optical transients were collected following potential steps from a value high enough for a full monolayer of bisulfate (θ = 0.2) to adsorb on the Pt(111) facet, Eox, to potentials Eads, at which either the c(2 × 2)-3CO or √19 × √19R23.4°-13CO phase is expected to form once surface saturation is achieved. Similar experiments involving subsequent steps from Eads to Eox provided unambiguous evidence that the rates of oxidation of c(2 × 2)-3CO on such quasi-perfect Pt(111) facet at constant overpotential are much slower than those of √19 × √19R23.4°-13CO, an effect attributed to the presence of intrinsic vacant sites within the latter, more dilute phase, which are required for oxidation of adsorbed CO to ensue. Furthermore, continuous CO adsorption–oxidation cycles were found to increase the rate of oxidation of the c(2 × 2)-3CO phase. This phenomenon was tentatively ascribed to the progressive emergence of defects along the edge of the facet (and/or within the facet itself) which serve as nucleation sites for the oxidation of adsorbed CO.

Article information

Article type
Paper
Submitted
25 Mar 2008
Accepted
09 May 2008
First published
07 Oct 2008

Faraday Discuss., 2009,140, 59-68

Surface dynamics at well-defined single crystal microfacetted Pt(111) electrodes: in situ optical studies

I. Fromondi and D. Scherson, Faraday Discuss., 2009, 140, 59 DOI: 10.1039/B805040F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements