Volume 141, 2009

Water growth on metals and oxides: binding, dissociation and role of hydroxyl groups

Abstract

We discuss the role of the presence of dangling H-bonds from water or from surface hydroxyl species on the wetting behavior of surfaces. Using scanning tunneling and atomic force microscopies and photoelectron spectroscopy, we have examined a variety of surfaces, including mica, oxides and pure metals. We find that in all cases, the availability of free, dangling H-bonds at the surface is crucial for the subsequent growth of wetting water films. In the case of mica, electrostatic forces and H-bonding to surface O atoms determine the water orientation in the first layer and also in subsequent layers with a strong influence in its wetting characteristics. In the case of oxides like TiO2, Cu2O, SiO2 and Al2O3, surface hydroxyls form readily on defects upon exposure to water vapor and help nucleate the subsequent growth of molecular water films. On pure metals, such as Pt, Pd and Ru, the structure of the first water layer and whether or not it exhibits dangling H-bonds is again crucial. Dangling H-bonds are provided by molecules with their plane oriented vertically, or by OH groups formed by the partial dissociation of water. By tying the two H atoms of the water molecules into strong H-bonds with pre-adsorbed O on Ru can also quench the wettability of the surface.

Article information

Article type
Paper
Submitted
16 Apr 2008
Accepted
19 Jun 2008
First published
22 Sep 2008

Faraday Discuss., 2009,141, 221-229

Water growth on metals and oxides: binding, dissociation and role of hydroxyl groups

M. Salmeron, H. Bluhm, M. Tatarkhanov, G. Ketteler, T. K. Shimizu, A. Mugarza, X. Deng, T. Herranz, S. Yamamoto and A. Nilsson, Faraday Discuss., 2009, 141, 221 DOI: 10.1039/B806516K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements