Volume 143, 2009

Solid state nanofibers based on self-assemblies: from cleaving from self-assemblies to multilevel hierarchical constructs

Abstract

Self-assemblies and their hierarchies are useful to construct soft materials with structures at different length scales and to tune the materials properties for various functions. Here we address routes for solid nanofibers based on different forms of self-assemblies. On the other hand, we discuss rational “bottom-up” routes for multi-level hierarchical self-assembled constructs, with the aim of learning more about design principles for competing interactions and packing frustrations. Here we use the triblock copolypeptide poly(L-lysine)-b-poly(γ-benzyl-L-glutamate)-b-poly(L-lysine) complexed with 2′-deoxyguanosine 5′-monophosphate. Supramolecular disks (G-quartets) stabilized by metal cations are formed and their columnar assembly leads to a packing frustration with the cylindrical packing of helical poly(γ-benzyl-L-glutamate), which we suggest is important in controlling the lateral dimensions of the nanofibers. We foresee routes for functionalities by selecting different metal cations within the G-quartets. On the other hand, we discuss nanofibers that are cleaved from bulk self-assemblies in a “top-down” manner. After a short introduction based on cleaving nanofibers from diblock copolymeric self-assemblies, we focus on native cellulose nanofibers, as cleaved from plant cell wall fibers, which are expected to have feasible mechanical properties and to be templates for functional nanomaterials. Long nanofibers with 5–20 nm lateral dimensions can be cleaved within an aqueous medium to allow hydrogels and water can be removed to allow highly porous, lightweight, and flexible aerogels. We further describe inorganic/organic hybrids as prepared by chemical vapour deposition and atomic layer deposition of the different nanofibers. We foresee functional materials by selecting inorganic coatings. Finally we briefly discuss how the organic template can be removed e.g., by thermal treatments to allow completely inorganic hollow nanofibrillar structures.

Article information

Article type
Paper
Submitted
13 Mar 2009
Accepted
31 Mar 2009
First published
06 Aug 2009

Faraday Discuss., 2009,143, 95-107

Solid state nanofibers based on self-assemblies: from cleaving from self-assemblies to multilevel hierarchical constructs

O. Ikkala, R. H. A. Ras, N. Houbenov, J. Ruokolainen, M. Pääkkö, J. Laine, M. Leskelä, L. A. Berglund, T. Lindström, G. ten Brinke, H. Iatrou, N. Hadjichristidis and C. F. J. Faul, Faraday Discuss., 2009, 143, 95 DOI: 10.1039/B905204F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements