Issue 11, 2001

The azomethine ylide strategy for β-lactam synthesis. A comprehensive mechanistic evaluation

Abstract

The release of azomethine ylide reactivity from oxazolidinones such as 4a/4b and 7 is proposed to involve a stepwise fragmentation via12 and 13 followed by cycloaddition (to an alkene) leading to adduct 14, which then undergoes decarboxylation under the reaction conditions to give the observed product 15. In the case of C[double bond, length as m-dash]C-based dipolarophiles, the cycloaddition is concerted and stereospecific, and the cycloaddition step is rate determining. Extensive experimental, together with computational data, including racemisation and kinetic studies, as well as the changes in reactivity associated with varying key structural features associated with the β-lactam based oxazolidinones is presented in support of the favoured mechanistic postulate. The fragmentation–cycloaddition–decarboxylation sequence is an alternative pathway for the release of an azomethine ylide from an oxazolidinone to that process already well established for N-alkyl oxazolidinones (concerted decarboxylation before cycloaddition). The N-acyl component associated with 4 may influence this change in mechanism, but specific structural features associated with the β-lactam system (ring strain and the presence of a malonyl moiety) are most likely responsible for the mechanistic divergence that is observed.

Graphical abstract: The azomethine ylide strategy for β-lactam synthesis. A comprehensive mechanistic evaluation

Article information

Article type
Paper
Submitted
18 Dec 2000
Accepted
01 Mar 2001
First published
16 May 2001

J. Chem. Soc., Perkin Trans. 1, 2001, 1270-1280

The azomethine ylide strategy for β-lactam synthesis. A comprehensive mechanistic evaluation

D. Brown, G. A. Brown, S. R. Martel, D. Planchenault, E. Turmes, K. E. Walsh, R. Wisedale, N. J. Hales, C. W. G. Fishwick and T. Gallagher, J. Chem. Soc., Perkin Trans. 1, 2001, 1270 DOI: 10.1039/B010046N

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements