Issue 5, 1999

meso-Aryl sapphyrins with heteroatoms; synthesis, characterization, spectral and electrochemical properties

Abstract

The synthesis, characterization and spectral properties of six new meso-aryl core modified sapphyrins are described. An efficient approach involving an acid catalyzed condensation of bithiophene diol 1 and modified tripyrranes 2a–2e allows preparation of the desired meso-aryl sapphyrins in 16–36% yield. The product distribution and the isolated yield were found to be dependent on the nature of the acid catalyst (Lewis acid or protic acid) and its concentration. Protic acid catalyst exclusively gave the expected sapphyrins while two additional products, an 18π tetraphenylporphyrin and a 26π modified rubyrin, were isolated under Lewis acid catalysis. An analysis of proton NMR and absorption spectral data suggests that in free base sapphyrins, the heterocyclic ring opposite to the bithiophene unit is inverted as in N-5 meso-aryl sapphyrin and the degree of inversion is dependent on the nature of the heterocyclic ring. The energy optimized structure calculated from the semi-empirical method substantiates such a conclusion. Protonation of sapphyrins generates respective mono- and dications and the heterocyclic ring retains an inverted structure in contrast to normal N-5 sapphyrins. The triplet excited lifetimes for free base and protonated derivatives are similar both under argon saturated and air equilibrated conditions, indicating that the triplet state quenching by oxygen is minimal. Cyclic voltammetric studies reveal easier reductions and harder oxidations relative to meso-aryl porphyrins and the Δredox observed for 3d suggests significant reduction of the HOMO–LUMO energy gap consistent with the large red shift observed for the Soret band.

Article information

Article type
Paper

J. Chem. Soc., Perkin Trans. 2, 1999, 961-968

meso-Aryl sapphyrins with heteroatoms; synthesis, characterization, spectral and electrochemical properties

A. Srinivasan, S. K. Pushpan, M. Ravi Kumar, S. Mahajan, T. K. Chandrashekar, R. Roy and P. Ramamurthy, J. Chem. Soc., Perkin Trans. 2, 1999, 961 DOI: 10.1039/A900137I

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements