Issue 6, 2010

Formation of square lamellae by self-assembly of long-chain bolaphospholipids in water

Abstract

The self-assembly process of the symmetric single-chain polymethylene-1,ω-bis(phosphocholine) (PC-C34-PC) with a chain length of 34 carbon atoms and two polar phosphocholine headgroups when put into water is exclusively driven by hydrophobic interactions of the long alkyl chains. This process leads to the formation of a dense network of helical nanofibers and the formation of a hydrogel (Meister et al. J. Phys. Chem. B, 2008, 112, 4506). In contrast, the single-chain bolalipids tetra- and hexatriacontane-1,ω-diyl-bis[2-(dimethylammonio)ethylphosphate] (Me2PE-Cn-Me2PE, n = 34, 36) and the partly deuterated analogue Me2PE-C11-(CD2)12-C11-Me2PE (dMe2PE-C34-Me2PE) form a different type of stable aggregate. In a first step, the self-assembly of these long-chain bolalipids in water at room temperature leads to the formation of a dense network of nanofibers which eventually form a hydrogel. Within one day, the nanofibers transform into square lamellae that grow up to an edge length of about 100 nm. Nanofibers are linked to one or two (opposite) corners of the squares leading to the appearance of a kite-like structure. After one week, all fibers have been transformed into square lamellae which are apparently stacked and form a gel cake. Within several weeks, a more compact cake is formed by syneresis, i.e. the expulsion of water.

Graphical abstract: Formation of square lamellae by self-assembly of long-chain bolaphospholipids in water

Supplementary files

Article information

Article type
Paper
Submitted
04 Nov 2009
Accepted
15 Dec 2009
First published
29 Jan 2010

Soft Matter, 2010,6, 1317-1324

Formation of square lamellae by self-assembly of long-chain bolaphospholipids in water

A. Meister, S. Drescher, G. Karlsson, G. Hause, U. Baumeister, G. Hempel, V. M. Garamus, B. Dobner and A. Blume, Soft Matter, 2010, 6, 1317 DOI: 10.1039/B923066A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements