Issue 1, 2010

High pressure studies of hydroxo-bridged Cu(ii) dimers

Abstract

A combination of high pressure single crystal X-ray diffraction and high pressure SQUID magnetometry has been used to study three hydroxo-bridged copper(II) dimers. [Cu2(OH)2(H2O)2(tmen)2](ClO4)2 (1; tmen = tetramethylethylenediamine), [Cu2(OH)2(tben)2](ClO4)2 (2; tben = di-tbutylethylenediamine) and [Cu2(OH)2(bpy)2](BF4)2 (3; bpy = 2,2′-bipyridine) have been structurally determined to 2.5, 0.9 and 4.7 GPa, respectively. The application of hydrostatic pressure imposes significant distortions and modifications in the structures of all three complexes. This is particularly true of the bond distances and angles between the metal centres and the bridging hydroxo groups. Compound 1 undergoes a phase transition between 1.2 and 2.5 GPa caused by the loss of a coordinated water molecule. This leads to a loss of symmetry and dramatic changes in the molecular structure of the complex. The structural changes are manifested in changes in the magnetic behaviour of the complexes as seen in dc susceptibility measurements up to ∼0.9 GPa for 1, 2 and 3: the exchange becomes less antiferromagnetic in 1 and 2 and more ferromagnetic in 3.

Graphical abstract: High pressure studies of hydroxo-bridged Cu(ii) dimers

Supplementary files

Article information

Article type
Paper
Submitted
04 Sep 2009
Accepted
05 Oct 2009
First published
05 Nov 2009

Dalton Trans., 2010,39, 113-123

High pressure studies of hydroxo-bridged Cu(II) dimers

A. Prescimone, J. Sanchez-Benitez, K. K. Kamenev, S. A. Moggach, J. E. Warren, A. R. Lennie, M. Murrie, S. Parsons and E. K. Brechin, Dalton Trans., 2010, 39, 113 DOI: 10.1039/B918287J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements